Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (6): 789-800.doi: 10.13809/j.cnki.cn32-1825/te.2023.06.010
• Comprehensive Research • Previous Articles Next Articles
REN Hong1(),LI Weiqi1,GUO Zhongchun1,YANG Xiaoteng1,XU Jian2,3,WANG Xiao2
Received:
2022-12-20
Online:
2024-01-03
Published:
2023-12-26
CLC Number:
Hong REN,Weiqi LI,Zhongchun GUO, et al. Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 789-800.
[1] |
李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
doi: 10.11698/PED.2018.04.12 |
LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
doi: 10.11698/PED.2018.04.12 |
|
[2] | 康玉柱. 中国古生代碳酸盐岩古岩溶储集特征与油气分布[J]. 天然气工业, 2008, 28(6): 1-12. |
KANG Yuzhu. Characteristics and distribution laws of paleokarst hydrocarbon reservoirs in Paleozoic carbonate formations in China[J]. Natural Gas Industry, 2008, 28(6): 1-12. | |
[3] | 庞雄奇, 林会喜, 郑定业, 等. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向[J]. 地质力学学报, 2020, 26(5): 673-695. |
PANG Xiongqi, LIN Huixi, ZHENG Dingye, et al. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China[J]. Journal of Geomechanics, 2020, 26(5): 673-695. | |
[4] | 毛敏, 袁胜斌, 张立刚, 等. 蚀变闪长岩潜山储层矿物组分特征与孔隙度的关系[J]. 非常规油气, 2022, 9(6): 14-19. |
MAO Min, YUAN Shengbin, ZHANG Ligang, et al. The relationship between mineral composition characteristics and porosity of altered diorite buried hill reservoir[J]. Unconventional Oil & Gas, 2022, 9(6): 14-19. | |
[5] | 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部“层控”与“断控”型油藏特征[J]. 石油实验地质, 2018, 40(4): 461-469. |
LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of ‘strata-bound’ and ‘fault-controlled’ reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. | |
[6] | 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160. |
BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir-forming models of Ordovician fault-controlled fracture-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160. | |
[7] |
李阳, 范智慧. 塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律[J]. 石油学报, 2011, 32(1): 101-106.
doi: 10.7623/syxb201101015 |
LI Yang, FAN Zhihui. Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield[J]. Acta Petrolei Sinica, 2011, 32(1): 101-106.
doi: 10.7623/syxb201101015 |
|
[8] | 徐微, 蔡忠贤, 林忠民, 等. 塔河油田奥陶系碳酸盐岩油藏岩溶成因类型[J]. 海相油气地质, 2012, 17(1): 66-72. |
XU Wei, CAI Zhongxian, LIN Zhongmin, et al. Karst genesis classification of Ordovician carbonate reservoir in Tahe Oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology, 2012, 17(1): 66-72. | |
[9] | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355. | |
[10] | 韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质, 2016, 37(5): 644-652. |
HAN Changcheng, LIN Chengyan, LU Xinbian, et al. Characterization and genesis of fault-controlled karst reservoirs in Ordovician carbonate karst slope of Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 644-652. | |
[11] | 陈琳, 康志宏, 李鹏, 等. 塔河油田奥陶系岩溶型碳酸盐岩油藏储集空间发育特征及地质模式探讨[J]. 现代地质, 2013, 27(2): 356-365. |
CHEN Lin, KANG Zhihong, LI Peng, et al. Development characteristics and geological model of Ordovician karst carbonate reservoir space in Tahe Oilfield[J]. Geoscience, 2013, 27(2): 356-365. | |
[12] | 金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15-21. |
JIN Qiang, TIAN Fei. Investigation of fracture-cave constructions of karsted carbonate reservoirs of Ordovician in Tahe Oilfield, Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2013, 37(5): 15-21. | |
[13] | 段艳秋. 塔河油田托甫台区奥陶系碳酸盐岩储集体地质特征研究[J]. 石油地质与工程, 2011, 25(5): 13-17. |
DUAN Yanqiu. Study on geological features of Tuoputai area Ordovician carbonate rock reservoir body in Taha oilfield[J]. Petroleum Geology and Engineering, 2011, 25(5): 13-17. | |
[14] |
宁超众, 孙龙德, 胡素云, 等. 塔里木盆地哈拉哈塘油田奥陶系缝洞型碳酸盐岩储层岩溶类型及特征[J]. 石油学报, 2021, 42(1): 15-32.
doi: 10.7623/syxb202101002 |
NING Chaozhong, SUN Longde, HU Suyun, et al. Karst types and characteristics of the Ordovician fracture-cavity type carbonate reservoirs in Halahatang oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(1): 15-32.
doi: 10.7623/syxb202101002 |
|
[15] | 李功强, 赵永刚, 江子凤, 等. 塔河油田托普台区碳酸盐岩储层类型判别方法及应用[J]. 工程地球物理学报, 2013, 10(3): 338-343. |
LI Gongqiang, ZHAO Yonggang, JIANG Zifeng, et al. Identification method and application carbonate rock reservoirs in Tuoputai Oilfield District[J]. Chinese Journal of Engineering Geophysics, 2013, 10(3): 338-343. | |
[16] | 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158. |
SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield[J]. Lithologic Reservoirs, 2022, 34(4): 150-158. | |
[17] | 苏俊磊, 张松扬, 王晓畅, 等. 塔河油田碳酸盐岩洞穴型储层充填性质常规测井表征[J]. 地球物理学进展, 2015, 30(3): 1264-1269. |
SU Junlei, ZHANG Songyang, WANG Xiaochang, et al. Conventional logging characterization on fillings characteristic of cavernous carbonate reservoirs in Tahe oilfield[J]. Progress in Geophysics, 2015, 30(3): 1264-1269. | |
[18] | 杨敏, 龙喜彬, 潜欢欢, 等. 塔河缝洞型油藏试井曲线特征及储集体识别[J]. 油气井测试, 2020, 29(3): 64-70. |
YANG Min, LONG Xibin, QIAN Huanhuan, et al. Well test curves and identification of fractured vuggy reservoirs in Tahe Oilfield[J]. Well Testing, 2020, 29(3): 64-70. | |
[19] | 梁健, 王栋, 张鑫, 等. 塔河油田碳酸盐岩缝洞型油藏远井储集体定量化表征及动用技术[J]. 地质学刊, 2021, 45(1): 29-36. |
LIANG Jian, WANG Dong, ZHANG Xin, et al. The Tahe oilfield carbonate fractured cave reservoir far-well quantitatively assessment and exploitation technology[J]. Journal of Geology, 2021, 45(1): 29-36. | |
[20] | 邓光校, 胡文革, 王震. 碳酸盐岩缝洞储集体分尺度量化表征[J]. 新疆石油地质, 2021, 42(2): 232-237. |
DENG Guangxiao, HU Wenge, WANG Zhen. Quantitative characterization of fractured-vuggy carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(2): 232-237. | |
[21] | 蔡明金, 王守峰, 尹国君, 等. 缝洞型碳酸盐岩储层储集类型判别方法[J]. 油气井测试, 2018, 27(4): 7-14. |
CAI Mingjin, WANG Shoufeng, YIN Guojun, et al. Reservoir type identification method for fractured-vuggy carbonate reservoirs[J]. Well Testing, 2018, 27(4): 7-14. | |
[22] | 韩长城, 林承焰, 任丽华, 等. 基于地震波形指示的碳酸盐岩储集体反演方法——以塔河油田中-下奥陶统为例[J]. 石油与天然气地质, 2017, 38(4): 822-830. |
HAN Changcheng, LIN Chengyan, REN Lihua, et al. Waveform-indication-based seismic inversion of carbonate reservoirs: A case study of the Lower-Middle Ordovician in Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 822-830. | |
[23] | 胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发, 2020, 10(2): 1-10. |
HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. | |
[24] | 程晓军. 缝洞型油藏注烃气提高采收率参数优化数值模拟研究[J]. 油气藏评价与开发, 2022, 12(6): 902-909. |
CHENG Xiaojun. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909. | |
[25] | 毛毳, 钟建华, 李阳, 等. 沉积环境对塔河油田六区奥陶系碳酸盐岩储集空间的影响[J]. 海相油气地质, 2013, 18(4): 15-22. |
MAO Cui, ZHONG Jianhua, LI Yang, et al. Effect of sedimentary environment on Ordovician carbonate reservoir space in block-6 of Tahe Oil Field, Tarim Basin[J]. Marine Origin Petroleum Geology, 2013, 18(4): 15-22. | |
[26] | 窦之林. 塔河油田碳酸盐岩缝洞型油藏开发技术[M]. 北京: 石油工业出版社, 2012. |
DOU Zhilin. Development technology of carbonate fractured cave reservoir in Tahe Oilfield[M]. Beijing: Petroleum Industry Press, 2012. | |
[27] | 陈欢庆, 唐海洋, 吴桐, 等. 精细油藏描述中的大数据技术及其应用[J]. 油气地质与采收率, 2022, 29(1): 11-20. |
CHEN Huanqing, TANG Haiyang, WU Tong, et al. Big data technology and its application in fine reservoir description[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 11-20. |
[1] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[2] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[3] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[4] | CHENG Xiaojun. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909. |
[5] | LIU Xueli,ZHENG Xiaojie,DOU Lian,XIE Shuang,PENG Xiaolong,ZHU Suyang. High precision numerical simulation of thin sandstone reservoir with sufficient bottom water and multiple cyclothem: A case study on lower formation of 9th block of Tahe Oilfield [J]. Reservoir Evaluation and Development, 2022, 12(2): 391-398. |
[6] | LI Wei,TANG Fang,HOU Boheng,QIAN Yin,CUI Chuanzhi,LU Shuiqingshan,WU Zhongwei. A method for oil recovery prediction of sandstone reservoirs in the eastern South China Sea based on neural network [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 730-735. |
[7] | LIU Xueli,ZHENG Xiaojie,TAN Tao,DOU Lian,XIE Shuang. Experiments on CO2 flooding mechanism for Tahe sandstone reservoir with strong bottom water [J]. Reservoir Evaluation and Development, 2020, 10(6): 115-120. |
[8] | CHENG Zhongfu,REN Bo,JIANG Yingfang,LIU Lei,YANG Zuguo. Feasibility of ground thermal cracking viscosity reduction and re-mixing technology of heavy oil in ultra-deep wells of Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 90-93. |
[9] | DU Chunhui,QIU He,CHEN Xiaofan,TIAN Liang,YUE Ping,LI Lu,YAO Junbo,WEI bo. Application of flow potential analysis technique based on numerical simulation in the development of fractured-vuggy reservoir [J]. Reservoir Evaluation and Development, 2020, 10(2): 83-89. |
[10] | TAN Tao,GUO Chen,CHEN Yong,DOU Lian,HUI Jian. Study and practice on mechanism of EOR by N2 flooding in fractured-vuggy reservoirs with high temperature and high pressure [J]. Reservoir Evaluation and Development, 2020, 10(2): 60-64. |
[11] | YANG Ming,LI Xiaobo,TAN Tao,LI Qing,LIU Honggunag,ZANG Yixia. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: A case study of TK440 well area in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 43-48. |
[12] | LI Xiaobo,LIU Xueli,YANG Ming,TAN Tao,LI Qing,LIU Hongguang,ZHANG Yixiao. Study on relationship optimization of injection and production in fractured-vuggy reservoirs with different karst background [J]. Reservoir Evaluation and Development, 2020, 10(2): 37-42. |
[13] | WANG Leilei,LIANG Zhiyan,QIU Zhenjun,JIANG Lei,ZHAO Zhongwen. Optimization and application of tail pipe suspension device installed on electric submersible pump for super heavy oil [J]. Reservoir Evaluation and Development, 2020, 10(2): 107-110. |
[14] | QIN Fei,JIN Yanlin. Supporting study of water plugging using emulsified oil in deep condensate reservoir of YT1 Fault block in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 101-106. |
[15] | HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. |
|