Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (1): 76-82.doi: 10.13809/j.cnki.cn32-1825/te.2024.01.011
• Field Application • Previous Articles Next Articles
SHI Yan1(),XIE Junhui1,GUO Xiaoting1,WU Tong2,CHEN Dequan2,SUN Lin2,DU Daijun2()
Received:
2023-08-30
Online:
2024-03-05
Published:
2024-02-26
CLC Number:
Yan SHI,Junhui XIE,Xiaoting GUO, et al. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82.
Table 2
Distribution of gas phase components in CO2 extraction 单位:%"
组分 | 单脱气摩尔分数 | ||||
---|---|---|---|---|---|
CO2加量 摩尔分数 0 | CO2加量 摩尔分数 15.595 | CO2加量 摩尔分数 35.762 | CO2加量 摩尔分数 49.06 | CO2加量 摩尔分数 57.345 | |
C1 | 98.395 | 97.42 | 93.10 | 85.52 | 88.13 |
C2 | 0.370 | 0.69 | 2.30 | 6.58 | 7.09 |
C3 | 0.508 | 0.72 | 1.68 | 2.32 | 1.43 |
iC4 | 0.161 | 0.24 | 0.58 | 0.89 | 0.54 |
nC4 | 0.301 | 0.51 | 1.21 | 2.02 | 1.28 |
iC5 | 0.115 | 0.16 | 0.40 | 0.81 | 0.42 |
nC5 | 0.117 | 0.20 | 0.55 | 1.18 | 0.71 |
C6 | 0.034 | 0.07 | 0.19 | 0.67 | 0.39 |
Table 3
Distribution of flow components in CO2 extraction 单位:%"
组分 | 单脱气摩尔分数 | ||||
---|---|---|---|---|---|
CO2加量摩尔分数 0 | CO2加量摩尔分数 15.595 | CO2加量 摩尔分数35.762 | CO2加量 摩尔分数49.06 | CO2加量摩尔分数57.345 | |
C1—C8 | 42.92 | 39.540 | 30.120 | 26.04 | 22.650 |
C9—C12 | 14.79 | 17.210 | 18.670 | 21.56 | 22.860 |
C13—C20 | 23.19 | 23.560 | 28.250 | 29.05 | 31.430 |
C21—C30 | 9.64 | 10.680 | 12.060 | 12.24 | 11.680 |
C30+ | 2.56 | 2.190 | 2.770 | 2.73 | 2.780 |
[1] | 夏春正, 赵健, 刘锋, 等. 吐哈探区稠油油藏注气吞吐适应性评价[J]. 新疆石油地质, 2023, 44(3): 341-346. |
XIA Chunzheng, ZHAO Jian, LIU Feng, et al. Adaptability evaluation of gas huff-n-puff in heavy oil reservoirs in Tuha exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3): 341-346. | |
[2] | 郭臣, 解慧, 聂延波, 等. 塔河碳酸盐岩缝洞型油藏超稠油注氮气实验研究[J]. 油气藏评价与开发, 2017, 7(4): 22-26. |
GUO Cheng, XIE Hui, NIE Yanbo, et al. Research on nitrogen gas injection in super heavy oil of Tahe carbonate fracture-cave type reservoir[J]. Reservoir Evaluation and Development, 2017, 7(4): 22-26. | |
[3] | 王晓燕, 章杨, 张杰, 等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 102-111. |
WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102-111. | |
[4] | 郭省学. 高温高压条件下CO2驱稠油微观运移特征[J]. 油气地质与采收率, 2019, 26(3): 99-104. |
GUO Xingxue. Study on microscopic migration characteristics of heavy oil by CO2 flooding at high temperature and high pressure[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 99-104. | |
[5] |
ZHOU X, LI X L, SHEN D H, et al. CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study[J]. Energy, 2022, 239: 122003.
doi: 10.1016/j.energy.2021.122003 |
[6] |
ZHOU X, YUAN Q W, RUI Z H, et al. Feasibility study of CO2 huff ‘n’ puff process to enhance heavy oil recovery via long core experiments[J]. Applied energy, 2019, 236: 526-539.
doi: 10.1016/j.apenergy.2018.12.007 |
[7] | FIROUZ A Q, TORABI F. Utilization of carbon dioxide and methane in huff-and-puff injection scheme to improve heavy oil recovery[J]. Fuel, 2014, 117(B): 966-973. |
[8] | 邓丹. 稠油油藏注CO2吞吐三维物理模型实验及参数优化[D]. 成都: 西南石油大学, 2017 |
DENG Dan. Three dimensional physical model experiment and parameter optimization of CO2 huff and puff in heavy oil reservoir[D]. Chengdu: Southwest Petroleum University, 2017. | |
[9] | 张丽雅, 宋兆杰, 马平华, 等. 稠油油藏注超临界二氧化碳驱油影响因素分析[J]. 地质与勘探, 2017, 53(4): 801-806. |
ZHANG Liya, SONG Zhaojie, MA Pinghua, et al. Analysis on influential factors of supercritical carbon dioxide flooding in heavy-oil reservoirs[J]. Geology and Exploration, 2017, 53(4): 801-806. | |
[10] | 罗瑞兰, 程林松, 李春兰, 等. 稠油油藏注CO2吞吐适应性研究[J]. 西安石油大学学报(自然科学版), 2005, 20(1): 43-46. |
LUO Ruilan, CHEN Linsong, LI Chunlan, et al. Research on the adaptability of cyclic CO2 injection for heavy oil reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2005, 20(1): 43-46. | |
[11] | 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6): 1009-1013. |
SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6): 1009-1013. | |
[12] | 蒲万芬, 孙波帅, 李一波, 等. 塔河缝洞型超稠油油藏二氧化碳驱实验研究[J]. 特种油气藏, 2016, 23(4): 123-126. |
PU Wanfen, SUN Boshuai, LI Yibo, et al. CO2 Flooding experiment of super-heavy oil reservoir in Tahe Oilfield[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 123-126. | |
[13] | 曹亚明, 郑家朋, 孙蓉, 等. 冀东油田浅层非均质油藏CO2驱数值模拟与方案设计[J]. 石油天然气学报, 2014, 36(5): 125-127. |
CAO Yaming, ZHENG Jiapeng, SUN Rong, et al. Numerical simulation and scheme design of CO2 flooding in shallow heterogeneous reservoirs of Jidong Oilfield[J]. Journal of Oil and Gas Technology, 2014, 36(5): 125-127. | |
[14] | 武玺, 张祝新, 章晓庆, 等. 大港油田开发中后期稠油油藏CO2吞吐参数优化及实践[J]. 油气藏评价与开发, 2020, 10(3): 80-85. |
Wu Xi, Zhang Zhuxin, Zhang Xiaoqing, et al. Optimization and practice of CO2 huff and puff parameters of heavy oil reservoir in the middle and late development stage in Dagang Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(3): 80-85. | |
[15] | BANK G C, RIESTENBERG D, KOPERNA G J. CO2-enhanced oil recovery potential of the appalachian basin[C]// Paper SPE-111282-MS presented at the Eastern Regional Meeting, Lexingtong, Kentucky, USA, October 17-19, 2007. |
[16] | SPIVAK A, KARAOGUZ D, ISSEVER K. Simulation of immiscible CO2 injection in a fractured carbonate reservoir, Bati Raman Field, Turkey[C]// Paper SPE-18765-MS presented at the SPE California Regional Meeting, Bakersfield, California, USA, April 5-7, 1989. |
[17] | 刘家军, 李立峰, 高庙. 低渗透油藏中CO2与原油的相互作用[J]. 油田化学, 2021, 38(3): 464-469. |
LIU Jiajun, LI Lifeng, GAO Miao. Interaction between CO2 and crude oil in low permeability reservoir[J]. Oilfield Chemistry, 2021, 38(3): 464-469. | |
[18] |
王千, 杨胜来, 拜杰, 等. 非均质多层储层中CO2驱替方式对驱油效果及储层伤害的影响[J]. 石油学报, 2020, 41(7): 875-884.
doi: 10.7623/syxb202007009 |
WANG Qian, YANG Shenglai, BAI Jie, et al. Influence of CO2 flooding mode on oil displacement effect and reservoir damage in heterogeneous multi-layer reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 875-884.
doi: 10.7623/syxb202007009 |
|
[19] |
ZHU W Y, MA Q P, SONG Z Y, et al. The effect of injection pressure on the microscopic migration characteristics by CO2 flooding in heavy oil reservoirs[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44(1): 1459-1467.
doi: 10.1080/15567036.2019.1644399 |
[20] |
LI Y B, PU W F, WEI B, et al. The feasibility of CO2 and N2 injection for the Tahe fracture-cavity carbonate extra-heavy oil reservoir: An experimental study[J]. Fuel, 2018, 226: 598-606.
doi: 10.1016/j.fuel.2018.04.056 |
[21] |
ZHENG S X, LI H Z, YANG D Y. Pressure maintenance and improving oil recovery with immiscible CO2 injection in thin heavy oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 112: 139-152.
doi: 10.1016/j.petrol.2013.10.020 |
[22] | 邢钰, 吴艳华, 郭继香, 等. 稠油致黏关键组分微观性质[J]. 科学技术与工程, 2020, 20(5): 1833-1838. |
XING Yu, WU Yanhua, GUO Jixiang, et al. Microscopic properties of viscous key components in heavy crude oils[J]. Science Technology and Engineering, 2020, 20(5): 1833-1838. | |
[23] | 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161. |
GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161. | |
[24] | 赵长虹, 孙新革, 卢迎波, 等. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168. |
ZHAO Changhong, SUN Xinge, LU Yingbo, et al. Physical simulation experiment of steam chamber evolution in compound development of thin-layer ultra-heavy oil flooding And drainage[J]. Lithologic Reservoirs, 2023, 35(5): 161-168. | |
[25] | 蔡耀荣, 武瑞明, 赵悦, 等. 重质油沥青质致粘机理研究进展[J]. 应用化工, 2018, 47(5): 1033-1037. |
CAI Yaorong, WU Ruiming, ZHAO Yue, et al. Research progress on viscosity-mechanism from asphaltenes of heavy oil[J]. Applied Chemical Industry, 2018, 47(5): 1033-1037. | |
[26] | 赵文学, 韩克江, 曾鹤, 等. 稠油降粘方法的作用机理及研究进展[J]. 当代化工, 2015, 44(6): 1365-1367. |
ZHAO Wenxue, HAN Kejiang, ZENG He, et al. Mechanisms and research progress of heavy oil viscosity reduction methods[J]. Contemporary Chemical Industry, 2015, 44(6): 1365-1367. | |
[27] | 汪双清, 沈斌, 林壬子. 辽河超稠油的化学组成特征及其致黏因素探讨[J]. 石油学报(石油加工), 2010, 26(6): 894-900. |
WANG Shuangqing, SHEN Bin, LIN Renzi. Investigation on the composition of the extra heavy oil in Liaohe Oilfield and the cause of its high viscosity[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2010, 26(6): 894-900. |
[1] | SHU Qinglin,WEI Chaoping,YU Tiantian,JI Bingyu,ZHANG Zhongping,ZHENG Wangang. Development technology progress of heavy oil and establishment and application practice of new classification standard: A case study of development of heavy oil in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 529-540. |
[2] | ZHENG Yiqiong, ZHANG Tao, LIU Haiying, RUAN Conghui, ZOU Shuai. New strategies of beneficial development of in-situ combustion in nearly abandoned heavy oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 504-509. |
[3] | LI Jianshan, GAO Hao, YAN Changhao, WANG Shitou, WANG Liangliang. Molecular dynamics simulation on interaction mechanisms of crude oil and CO2 [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 26-34. |
[4] | ZHANG Zhisheng, WU Xiangyang, WU Qian, WANG Jixing, LIN Hanchi, GUO Junhong, WANG Rui, LI Jinhua, LIN Qianguo. Risk management system and application of CO2 flooding and sequestration leakage [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 91-101. |
[5] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[6] | WANG Gaofeng, LIAO Guangzhi, LI Hongbin, HU ZhiMing, WEI Ning, CONG Lianzhu. Mechanism and calculation model of EOR by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 734-740. |
[7] | CUI Chuanzhi,YAN Dawei,YAO Tongyu,WANG Jian,ZHANG Chuanbao,WU Zhongwei. Prediction method of migration law and gas channeling time of CO2 flooding front: A case study of G89-1 Block in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 741-747. |
[8] | DENG Jiasheng,WANG Ziyi,HE Wangda,PENG Dongyu,YU Bo,TANG Hongming. Experimental study on reaction of chlorite with CO2 aqueous solution [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 777-783. |
[9] | LI Yang,HUANG Wenhuan,JIN Yong,HE Yingfu,CHEN Zuhua,TANG Yong,WU Gongyi. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 793-804. |
[10] | JI Bingyu,HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 805-811. |
[11] | ZHANG Zonglin,LYU Guangzhong,WANG Jie. CCUS and its application in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 812-822. |
[12] | WANG Junheng,WANG Jian,ZHOU Zhiwei,WANG Danling,ZHAO Peng,WANG Guiqing,LU Yingbo. Experimental study on mechanism of CO2 assisted steam flooding in heavy oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 852-857. |
[13] | TANG Liangrui,JIA Ying,YAN Jin,LI Guanghui,WANG Yong,HE Youwei,QING Jiazheng,TANG Yong. Study on calculation method of CO2 storage potential in depleted gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863. |
[14] | WU Gongyi,ZHAO Ziping,WU Bo. CO2 flooding development models and economic benefit evaluation of different types of reservoirs in Subei basin [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 864-870. |
[15] | LIU Gang,WANG Junheng,WANG Danling,YAN Yonghe,JIANG Xuefeng,WANG Qian. Development and reservoir adaptability evaluation of a high temperature resistant plugging agent: tannin extract [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 452-458. |
|