Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 593-599.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.009
• Field Application • Previous Articles Next Articles
CHENG Hai1(),ZHANG Yiqun2,WANG Yin3,LIU Chao3
Received:
2023-11-20
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Hai CHENG,Yiqun ZHANG,Yin WANG, et al. Progress and understanding on geology-drilling engineering-mechanics coupling mechanism of ultra-deep directional wells[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 593-599.
Table 1
Main software of 3D modeling and its advantages and disadvantages"
对比项目 | Petrel | Gocad | FCM | RMS | FastTracker |
---|---|---|---|---|---|
功能 | 构造建模, 油气藏建模 | 地震解释与反演,速度建模,构造建模,数值模拟 | 油气藏确定性建模 | 构造建模,油气藏建模,数值模拟 | 油气藏建模 |
基于平台 | Windows | Windows,Linux,Solaris,SGJ | Windows | Solaris,SGJ | Windows |
可拓展性 | 任意拓展 | 任意拓展 | 无拓展 | 无拓展 | 无拓展 |
系统开放性 | 具有用户自己开发 插件功能 | 开发版具有用户自己开发插件功能 | — | — | — |
可视化性能 | 三维可视化功能强 | 三维可视化功能强 | 二维显示为主 | 三维可视化功能较好 | 三维可视化功能较好 |
复杂构造处理能力 | 强 | 强 | 差 | 较强 | 一般 |
建模速度 | 快 | 快 | 较快 | 慢 | 较快 |
Table 2
Comparison of methods for formation pore pressure calculated by logging data"
原理 | 优点 | 缺点 | |
---|---|---|---|
等效深度法 | 正常压实的地层,声波时差曲线有一条明显的压实趋势线;而异常压实区,声波时差曲线往往偏离正常压实趋势线 | 简单,容易计算 | 仅适用于“不平衡压实过程导致的地层欠压实”高压的情况 |
Eaton法 | 与等效深度法相似,基于正常压实理论构建正常压实趋势线,引入压实校正系数C(Eaton指数) | Eaton指数与地层埋深、声波时差间具有较好相关性,精度高,且计算相对简单 | Eaton指数受制岩性、成岩作用及流体类型,须用实测压力数据矫正 |
Fillippone法 | 通过获取上覆岩层压力和有效应力,则可以得到地层孔隙压力;岩石力学参数与岩石的有效应力具有密切联系 | 理论基础较完善,其预测精度比等效深度法高,且不受岩性和异常压力形成机制的影响 | 需要大量的测井数据、实验数据;且没有考虑到其他机制对地层孔隙压力的影响 |
Bowers法 | 利用垂直有效应力与声波速度间的原始加载及卸载曲线方程直接计算出垂直有效应力,结合上覆岩层压力便可求取地层孔隙压力 | 不需构建正常压实趋势方程,能够计算非连续沉积地层的孔隙压力,且不受制于地层压力成因是否异常 | 在井资料或测压资料缺少的地区应用受限 |
经验统计模型 | 利用测井资料精准地计算地层的孔隙度和泥质含量,再结合声波时差测井获取的声波传播速度,便可计算地层孔隙压力 | 不受岩性和异常压力成因机制的影响,对复杂岩性剖面和压力成因地区有较大的优势,地区适用性好 | 涉及的参数较多,各参数的误差相互叠加致使地层孔隙压力预测精度难以保障 |
Table 4
Comparison of fault identification methods"
方法 | 项目 | 操作原理 | 优点 | 缺点 |
---|---|---|---|---|
传统断层 识别方法 | 常规地 震剖面 | 肉眼识别地震资料中反射层位的位移或中断、横向上不连续等断层特征 | 操作简单 | 周期长、主观性强,复杂断层可信度低 |
井断点 引导 | 在准确的断点时深转换前提下,井点处断层位置确定,通过井断点引导识别断层信息 | 准确识别出小断距断层 | 对于井网密度要求较高 | |
基于地震 属性的断层识别方法 | 相干体 属性 | 将三维地震振幅数据转换为不连续特征的相干体属性数据,断层等表现为低相干值 | 算法成熟,计算速度快 | 相干的差异不一定严格对应断层 |
曲率属性 | 将三维地震资料通过求导,以二维曲率算法为基础,利用网格拟合二次曲面 | 算法成熟,抗噪性高,可视化功能好 | 易受解释及软件等因素的影响,地震资料并没有参与计算 | |
方差体 | 通过计算相邻地震道之间的方差来表示各个地震道反射特征的差异,从而识别断层 | 抗噪声能力强,大断层识别效果好 | 计算速度慢,微小断层识别效果较差 | |
断层的自动识别方法 | 蚂蚁追踪 | 在地震数据体中,“蚂蚁”会在满足预设断裂条件处散播“信息素”并聚集,实现对目标断层的识别与追踪 | 断层识别速度与精度 较好 | 需要反复调试参数 |
[1] | 中华人民共和国国土资源部. 石油天然气储量计算规范:DZ/T 0217—2005[S]. 北京: 中国标准出版社, 2005. |
Ministry of Land and Resources of the People's Republic of China. Specification for calculation of petroleum and natural gas reserves: DZ/T 0217—2005[S]. 北京: China Standard Publishing House, 2005. | |
[2] | 中国国家标准化管理委员会. 石油天然气钻进工程术语:GB/T 28911—2012[S]. 北京: 中国标准出版社, 2012. |
Standardization Administration of the People’s Republic of China. Vocabulary of drilling engineering for the petroleum and natural gas: GB/T 28911—2012[S]. Beijing: China Standard Publishing House, 2012. | |
[3] | 中华人民共和国国土资源部. 页岩气资源储量计算与评价技术规范: DZ/T 0254—2014[S]. 北京: 中国标准出版社, 2014. |
Ministry of Land and Resources of the People's Republic of China. Regulation of shale gas resources/reserves estimation: DZ/T 0254—2014[S]. Beijing: China Standard Publishing House, 2014. | |
[4] | 贾承造, 张永峰, 赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业, 2014, 34(2): 1-11. |
JIA Chengzao, ZHANG Yongfeng, ZHAO Xia. Prospects of and challengs to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1-11. | |
[5] |
李剑, 佘源琦, 高阳, 等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探, 2019, 24(4): 403-417.
doi: 10.3969/j.issn.1672-7703.2019.04.001 |
LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403-417.
doi: 10.3969/j.issn.1672-7703.2019.04.001 |
|
[6] | 戴金星, 黄世鹏, 刘岩, 等. 中国天然气勘探开发60年的重大进展[J]. 石油与天然气地质, 2010, 31(6): 689-698. |
DAI Jinxing, HUANG Shipeng, LIU Yan, et al. Significant advancement in natural gas exploration and development in China during the past sixty years[J]. Oil & Gas Geology, 2010, 31(6): 689-698. | |
[7] |
李勇, 徐珂, 张辉, 等. 塔里木盆地超深层油气钻探工程的特殊地质因素[J]. 中国石油勘探, 2022, 27(3): 88-98.
doi: 10.3969/j.issn.1672-7703.2022.03.008 |
LI Yong, XU Ke, ZHANG Hui, et al. Special geological factors in drilling engineering of ultra-deep oil and gas reservoir in Tarim Basin[J]. China Petroleum Exploration, 2022, 27(3): 88-98.
doi: 10.3969/j.issn.1672-7703.2022.03.008 |
|
[8] |
李阳, 薛兆杰, 程喆. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
|
[9] | 李世海, 李晓, 刘晓宇. 工程地质力学及其应用中的若干问题[J]. 岩石力学与工程学报, 2006, 25(6): 1125-1140. |
LI Shihai, LI Xiao, LIU Xiaoyu. Some issues in engineering geomechanics and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1125-1140. | |
[10] |
胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1-5.
doi: 10.3969/j.issn.1672-7703.2017.01.001 |
HU Wenrui. Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1-5.
doi: 10.3969/j.issn.1672-7703.2017.01.001 |
|
[11] | 贾长贵, 卞晓冰. 高温高压高应力页岩气井丁页2HF井成功压裂[J]. 石油钻探技术, 2014, 42(1): 25. |
JIA Changgui, BIAN Xiaobing. HPHT shale gas well hydraulic fracturing in Dingye 2HF[J]. Petroleum Drilling Techniques, 2014, 42(1): 25. | |
[12] | 徐中华, 郑马嘉, 刘忠华, 等. 川南地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 2020, 47(6): 1-11. |
XU Zhonghua, ZHENG Majia, LIU Zhonghua, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1100-1110. | |
[13] | 刘清友, 朱海燕, 陈鹏举. 地质工程一体化钻井技术研究进展及攻关方向——以四川盆地深层页岩气储层为例[J]. 天然气工业, 2021, 41(1): 178-188. |
LIU Qingyou, ZHU Haiyan, CHEN Pengju. Research progress and direction of geology-engineering integrated drilling technology: A case study on the deep shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 178-188. | |
[14] | 陈麒玉. 基于多点地质统计学的三维地质体随机建模方法研究[D]. 北京: 中国地质大学, 2018. |
CHEN Qiyu. Three-dimensional stochastic modeling method of geological entities based on multiple-point geostatistics[D]. Beijing: China University of Geosciences, 2018. | |
[15] |
李皋, 张毅, 杨旭. 油气勘探开发中的工程地质力学问题及研究方法[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 72-80.
doi: 10.11885/j.issn.1674-5086.2023.02.26.01 |
LI Gao, ZHANG Yi, YANG Xu. Engineering geological mechanics issues and research methods in oil and gas exploration and development[J]. Journal of Southeast Petroleum University(Science & Technology Edition), 2023, 45(3): 72-80.
doi: 10.11885/j.issn.1674-5086.2023.02.26.01 |
|
[16] | 曹东升, 曾联波, 黄诚, 等. 多尺度岩石力学层对断层和裂缝发育的控制作用[J]. 地球科学, 2023, 48(7): 2535-2556. |
CAO Dongsheng, ZENG Lianbo, HUANG Cheng, et al. Control of multi‐scale mechanical stratigraphy on development of faults and fractures[J]. Earth Science, 2023, 48(7): 2535-2556. | |
[17] | 甘仁忠, 熊健, 彭妙, 等. 陆相页岩储集层岩石力学特性及能量演化特征[J]. 新疆石油地质, 2023, 44(4): 472-478. |
GAN Renzhong, XIONG Jian, PENG Miao, et al. Rock mechanical properties and energy evolution of continental shale reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(4): 472-478. | |
[18] |
黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65-69.
doi: 10.7623/syxb200606017 |
HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Application of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65-69.
doi: 10.7623/syxb200606017 |
|
[19] |
邹贤军, 陈亚琳. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 2018, 29(12): 1775-1780.
doi: 10.11764/j.issn.1672-1926.2018.10.017 |
ZOU Xianjun, CHEN Yalin. Geostress logging evaluation methods of Longmaxi Formation shale in Fuling area based on transversely isotropic model, Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(12): 1775-1780.
doi: 10.11764/j.issn.1672-1926.2018.10.017 |
|
[20] | 蔡美峰. 地应力测量原理和技术[M]. 北京: 科学出版社, 1995. |
CAI Meifeng. Principles and techniques of geostress measurement[M]. Beijing: Science Press, 1985. | |
[21] | 葛洪魁, 林英松, 王顺昌. 地应力测试及其在勘探开发中的应用[J]. 石油大学学报(自然科学版), 1998, 22(1): 94-99. |
GE Hongkui, LIN Yingsong, WANG Shunchang. Geostress testing and its application in petroleum exploration and development[J]. Journal of the University of Petroleum(Science & Technology Edition), 1998, 22(1): 94-99. | |
[22] | 杨东辉, 赵毅鑫, 张村, 等. 循环加载对沉积岩岩石Kaiser效应影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2697-2708. |
YANG Donghui, ZHAO Yixin, ZHANG Cun, et al. Experimental study on the influence of cyclic loading on Kaiser effect of sedimentary rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2697-2708. | |
[23] | ERT M K, WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210(1): 153-168. |
[24] |
印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4): 488-504.
doi: 10.3969/j.issn.1000-1441.2018.04.001 |
YIN Xingyao, MA Ni, MA Zhengqian, et al. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 488-504.
doi: 10.3969/j.issn.1000-1441.2018.04.001 |
|
[25] | 尹虎, 李黔, 李建涛, 等. 利用套管变形量进行地应力反演[J]. 石油钻探技术, 2012, 40(3): 54-57. |
YIN Hu, LI Qian, LI Jiantao, et al. Inversion of in-situ stress with the amount of casing deformation[J]. Petroleum Drilling Techniques, 2012, 40(3): 54-57. | |
[26] | 夏宏泉, 刘畅, 李高仁, 等. 基于测井资料的TIV地层水平地应力计算方法[J]. 石油钻探技术, 2019, 47(6): 67-72. |
XIA Hongquan, LIU Chang, LI Gaoren, et al. A logging data-based calculation method for the horizontal TIV formation in-situ stress[J]. Petroleum Drilling Techniques, 2019, 47(6): 67-72. | |
[27] | 赵永强. 成像测井综合分析地应力方向的方法[J]. 石油钻探技术, 2009, 37(6): 39-43. |
ZHAO Yongqiang. A method of analyzing crustal stress orientation using imaging logging[J]. Petroleum Drilling Techniques, 2009, 37(6): 39-43. | |
[28] | 刘向君, 罗亚平. 岩石力学与石油工程[M]. 北京: 石油工业出版, 2004. |
LIU Xiangjun, LUO Yaping. Rock mechanics and petroleum engineering[M]. Beijing: Petroleum Industry Press, 2004. | |
[29] | 樊洪海, 张传进. 复杂地层孔隙压力求取新技术[J]. 石油钻探技术, 2005, 33(5): 43-46. |
FAN Honghai, ZHANG Chuanjin. New methods for calculation of pore pressure in complex geologic environment[J]. Petroleum Drilling Techniques, 2005, 33(5): 43-46. | |
[30] | 孙建孟, 张颖, 王跃祥, 等. 基于测井资料的地层压力预测方法研究进展[J]. 测井技术, 2023, 47(2): 119-128. |
SUN Jianmeng, ZHANG Ying, WANG Yuexiang, et al. Research progress in formation pressure prediction methods based on logging data[J]. Well Logging Technology, 2023, 47(2): 119-128. | |
[31] | 余夫, 金衍, 陈勉, 等. 基于薄板理论的碳酸盐岩地层压力检测方法探讨[J]. 石油钻探技术, 2014, 42(5): 57-61. |
YU Fu, JIN Yan, CHEN Mian, et al. Discussion on a formation pore pressure detection method for carbonate rocks based on the thin plate theory[J]. Petroleum Drilling Techniques, 2014, 42(5): 57-61. | |
[32] | 张兰江, 夏竹君, 李志勇, 等. 复杂压力系统地层压力预测方法在文东油田的应用[J]. 石油钻探技术, 2002, 31(2): 16-18. |
ZHANG Lanjiang, XIA Zhujun, LI Zhiyong, et al. Application of complex formation pressure prediction in Wendong Oilfield[J]. Petroleum Drilling Techniques, 2002, 31(2): 16-18. | |
[33] | 刘宇坤. 基于多孔介质弹性力学的碳酸盐岩地层超压预测理论模型及应用[D]. 北京: 中国地质大学, 2020. |
LIU Yukun. Theoretical model and application of overpressure prediction in carbonate formation based on the poroelasticity theory[D]. Beijing: China University of Geosciences, 2020. | |
[34] | 刘宇坤, 何生, 何治亮, 等. 碳酸盐岩超压岩石物理模拟实验及超压预测理论模型[J]. 石油与天然气地质, 2019, 40(4): 716-724. |
LIU Yukun, HE Sheng, HE Zhiliang, et al. The rock physics modeling experiment under overpressure and theoretical model for overpressure prediction in carbonate rocks[J]. Oil & Gas Geology, 2019, 40(4): 716-724. | |
[35] | 刘宇坤, 何生, 何治亮, 等. 基于多孔介质弹性理论的碳酸盐岩地层超压预测[J]. 地质科技情报, 2019, 38(4): 53-61. |
LIU Yukun, HE Sheng, HE Zhiliang, et al. Overpressure prediction in carbonate formation based on the poroelasticity theory[J]. Geological Science and Technology Information, 2019, 38(4): 53-61. | |
[36] | FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]// Paper OTC-3662-MS presented at the Offshore Technology Conference, Houston, Texas, April 1979. |
[37] | BOWERS G. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95. |
[38] | EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934. |
[39] | 高宝奎, 高德利. 深井钻柱的横向振动浅论[J]. 石油钻采工艺, 1996, 18(4): 8-15. |
GAO Baokui, GAO Deli. Lateral vibration of drill string in deep well[J]. Oil Drilling & Production Technology, 1996, 18(4): 8-15. | |
[40] | 刘清友, 马德坤, 汤小文. 钻柱纵向振动模型的建立及求解方法[J]. 西南石油学院学报(自然科学版), 1998, 20(4): 55-59. |
LIU Qingyou, MA Dekun, TANG Xiaowen. Establishment and solution of longitudinal vibration model of drill string[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 1998, 20(4): 55-59. |
[1] | SHU Qinglin, WANG Yanan, HAN Zhiying, YAO Xiutian, XIA Jian, CHEN Yumao, LI Weizhong. Strategies and methods of 3D geological multi-level modeling for oilfields: A case study of an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 779-787. |
[2] | ZHANG Douzhong,TANG Jiguang,CAI Jun. Characteristics of geostress field of Longmaxi Formation in Nanchuan area, Eastern Chongqing [J]. Reservoir Evaluation and Development, 2021, 11(2): 190-196. |
[3] | Yang Yong,Li Heng,Yang Duo,Du Shuangjun,Peng Jie,Chen Kun. Forward simulation of response characteristics of the array lateral logging in drilling process of fault [J]. Reservoir Evaluation and Development, 2019, 9(2): 50-55. |
|