Methodology and Theory

Physicochemical mechanism of water phase imbibition in shale reservoirs

  • Ying LI ,
  • Maomao LI ,
  • Haitao LI ,
  • Hao YU ,
  • Qihui ZHANG ,
  • Hongwen LUO
Expand
  • Southwestern Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2021-10-22

  Online published: 2023-01-30

Abstract

Shale gas reservoirs, which develope micro-nano pore throats and fractures, have high clay mineral content, and strong heterogeneity of porosity. Therefore, large-scale hydraulic fracturing is usually needed to realize the effective exploitation. In the process of hydraulic fracturing, the spontaneous imbibition of the water phase will trigger a series of physical and chemical effects on the shale gas reservoir, changing the pore structures, physical and chemical properties of shale gas reservoirs, thereby affecting the production of shale gas. In order to further clarify the influence mechanism of water phase imbibition in shale gas reservoirs, multiple repetitive imbibition experiments were carried out. Based on the changes in rock sample quality caused by mineral dissolution, the visual characteristics of samples from scanning electron microscope, the observation of nuclear magnetic resonance pore structures, and the change of physical properties, the impact of imbibition on the microscopic pore structure, permeability and porosity of shale are revealed. The results show that: ① Water imbibition causes fractures in shale, thus changing the pore structure; ② The proportion of macropores increases in shale samples with significantly improved porosity, which indicates that water imbibition will increase the pore space in shale; ③ The imbibition capacity is positively correlated with the porosity and permeability of shale, and the physical properties of shale are significantly improved after imbibition. In addition, the time index is found to be able to quantitatively characterize the influence of imbibition on the pore-throat connectivity of shale.

Cite this article

Ying LI , Maomao LI , Haitao LI , Hao YU , Qihui ZHANG , Hongwen LUO . Physicochemical mechanism of water phase imbibition in shale reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(1) : 64 -73 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.007

References

[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
[1] ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
[2] 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80.
[2] ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80.
[3] 陈煌. 页岩气开发技术现状及研究方向[J]. 化工设计通讯, 2020, 46(8)24, 28.
[3] CHEN Huang. Current status and research direction of shale gas development technology[J]. Chemical Engineering Design Communications, 2020, 46(8): 24, 28.
[4] VENGOSH A, JACKSON R B, WARNER N R, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
[5] 康毅力, 张晓怡, 游利军, 等. 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学, 2017, 28(6): 819-827.
[5] KANG Yili, ZHANG Xiaoyi, YOU Lijun, et al. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs[J]. Natural Gas Geoscience, 2017, 28(6): 819-827.
[6] 游利军, 王飞, 康毅力, 等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029.
[6] YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029.
[7] GHANBARI E, DEHGHANPOUR H. Impact of rock fabric on water imbibition and salt diffusion in gas shales[J]. International Journal of Coal Geology, 2015, 138: 55-67.
[8] SCOTT H, PATEY I T M, BYRNE M T. Return permeability measurements-proceed with caution[C]// Paper SPE-107812-MS presented at the European Formation Damage Conference, Scheveningen, The Netherlands, May 2007.
[9] 黄睿哲, 姜振学, 高之业, 等. 页岩储层组构特征对自发渗吸的影响[J]. 油气地质与采收率, 2017, 24(1): 111-115.
[9] HUANG Ruizhe, JIANG Zhenxue, GAO Zhiye, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 111-115.
[10] 李春颖, 张志全, 林飞, 等. 压裂液在页岩储层中的滞留与吸收初步探索[J]. 科技通报, 2016, 32(8)31-35.
[10] LI Chunying, ZHANG Zhiquan, LIN Fei, et al. Initial exploration of fracturing fluid retention in shale reservoirs[J]. Bulletin of Science and Technology, 2016, 32(8): 31-35.
[11] 周彤, 张士诚, 杨柳, 等. 页岩储层压裂裂缝表面软化规律实验研究[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 57-63.
[11] ZHOU Tong, ZHANG Shicheng, YANG Liu, et al. Experimental study on surface softening law of fracturing fracture in shale reservoirs[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(1): 57-63.
[12] 杨柳, 鲁晓兵, 葛洪魁, 等. 致密储层渗吸特征与孔径分布的关系[J]. 科学技术与工程, 2019, 19(16): 106-111.
[12] YANG Liu, LU Xiaobing, GE Hongkui, et al. The relationship between imbibition characteristics and pore size distribution[J]. Science Technology and Engineering, 2019, 19(16): 106-111.
[13] 申颍浩, 葛洪魁, 宿帅, 等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 88-98.
[13] SHEN Yinghao, GE Hongkui, SU Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 88-98.
[14] 熊健, 陈守松, 梁利喜, 等. 龙马溪组页岩的渗吸特征及其影响因素[J]. 桂林理工大学学报, 2020, 40(4): 688-694.
[14] XIONG Jian, CHEN Shousong, LIANG Lixi, et al. Imbibition characteristics and influencing factors of Longmaxi Formation shale[J]. Journal of Guilin University of Technology, 2020, 40(4): 688-694.
[15] 于佳尧, 葛洪魁, 于雪盟, 等. 页岩油储层自发渗吸特征及影响因素的实验研究[C]// 2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019: 727-732.
[15] YU Jiayao, GE Hongkui, YU Xuemeng, et al. Experimental study on spontaneous imbibition characteristics and influencing factors of shale oil reservoirs[C]// International Field Exploration and Development Conference 2019, 2019: 727-732.
[16] 王敉邦, 蒋林宏, 包建银, 等. 渗吸实验描述与方法适用性评价[J]. 石油化工应用, 2015, 34(12): 102-105.
[16] WANG Mibang, JIANG Linhong, BAO Jianyin, et al. Imbibition experimental description and methods' applicability evaluation[J]. Petrochemical Industry Application, 2015, 34(12): 102-105.
[17] 叶洪涛, 宁正福, 王庆, 等. 页岩储层自发渗吸实验及润湿性研究[J]. 断块油气田, 2019, 26(1): 84-87.
[17] YE Hongtao, NING Zhengfu, WANG Qing, et al. Spontaneous imbibition experiment and wettability of shale reservoir[J]. Fault Block Oil & Gas Field, 2019, 26(1): 84-87.
[18] 程秋洋, 游利军, 康毅力, 等. 氧化溶蚀作用对页岩水相自吸的影响[J]. 油气地质与采收率, 2020, 27(4): 94-103.
[18] CHENG Qiuyang, YOU Lijun, KANG Yili, et al. Effect of oxidative dissolution on water spontaneous imbibition in shale gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 94-103.
[19] 毛伟, 贾红兵, 杜朋举. 核磁共振技术在油水两相渗流特征研究中的应用[J]. 特种油气藏, 2011, 18(6): 103-105.
[19] MAO Wei, JIA Hongbing, DU Pengju. Application of NMR in the study of oil/water two phase flow[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 103-105.
[20] 穆英, 胡志明, 端祥刚, 等. 页岩吸水对储层的作用机理研究[J]. 天然气与石油, 2020, 38(6): 73-79.
[20] MU Ying, HU Zhiming, DUAN Xianggang, et al. Study on shale water absorption mechanism on reservoir[J]. Natural Gas and Oil, 2020, 38(6): 73-79.
[21] LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid-Zeitschrift, 1918, 23(15): 15-22.
[22] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.
[23] LAM C H, HORVáTH V K. Pipe network model for scaling of dynamic interfaces in porous media[J]. Physical Review Letters, 2000, 85(6): 1238-1241.
[24] ZHOU K, ZHANG W, LI Y, ET AL. Prediction of recovery by spontaneous imbibition in gas/liquid/rock systems[C]// Paper SPE-107355-MS presented at the EUROPEC/EAGE Conference and Exhibition, London, June 2007.
[25] MA S X, MORROW N R, ZHANG X Y. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science & Engineering, 1997, 18(3-4): 165-178.
[26] HU Q H, EWING R P, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
Outlines

/