Methodological Theory

Dissolution of supercritical CO2 on carbonate reservoirs

  • Ying LI ,
  • Hansong MA ,
  • Haitao LI ,
  • Leonhard GANZER ,
  • Zheng TANG ,
  • Ke LI ,
  • Hongwei LUO
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Institute of Subsurface Energy Systems, Clausthal University of Technology, Agricolastraβe 10, Clausthal-Zellerfeld 38678, Germany

Received date: 2022-07-26

  Online published: 2023-06-26

Abstract

In order to study the physicochemical reaction law of carbonate rock reservoirs under the condition of CO2 geological storage, lab experiments on the reaction of carbonate rocks and supercritical CO2 under reservoir conditions were carried out with the carbonate reservoir of the Sinian Dengying Formation reservoirs in the Sichuan Basin as the research object. The response characteristics of carbonate porosity, permeability, and pore structure to supercritical CO2 environment were investigated by the pressure pulse attenuation method, scanning electron microscopy method, and nuclear magnetic resonance method. The test resulted in an increase both in the porosity and permeability of the carbonate rock. The maximum porosity change rate is 32.35 % and the permeability increases by eleven times. Additionally, micro-fractures appear after the test, and the proportion of the micro-fractures with the aperture of 20~50 μm increases. By using X-ray diffraction and contact angle techniques, the mineral makeup and wetability of carbonate rocks were examined. The average content of main minerals quartz increased by 12.6 %, the average content of calcite decreased by 22.3 %, and the hydrophilicity increased. Brazilian splitting technique was used to examine the mechanical characteristics of carbonate rocks both before and after supercritical CO2 immersion. The tensile strength of carbonate rocks was discovered to have fallen by 18.28 %, causing damage to the rocks, and the compaction stage of the load-displacement curve was longer. This work examines the effects of supercritical CO2 dissolution on the porosity, permeability, mineral composition, and rock mechanical characteristics of carbonate rocks, and provides theoretical evidence for the geological storage of CO2 in carbonate reservoirs.

Cite this article

Ying LI , Hansong MA , Haitao LI , Leonhard GANZER , Zheng TANG , Ke LI , Hongwei LUO . Dissolution of supercritical CO2 on carbonate reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(3) : 288 -295 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.03.003

References

[1] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20.
[1] SUN Tengmin, LIU Shiqi, WANG Tao. Research progress on the evaluation of carbon dioxide geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20.
[2] 王敬霞, 雷磊, 于青春. 我国碳酸盐岩储层CO2地质储存潜力与适宜性[J]. 中国岩溶, 2015, 34(2): 101-108.
[2] WANG Jingxia, LEI Lei, YU Qingchun. Geological storage potential and suitability of CO2 in carbonate reservoirs in China[J]. China Karst, 2015, 34(2): 101-108.
[3] WANG J, ZHAO Y, AN Z Z, et al. CO2 storage in carbonate rocks: An experimental and geochemical modeling study[J]. Journal of Geochemical Exploration, 2022, 234: 106942.
[4] 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(01): 72-76.
[4] TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental study on the effect of CO2 injection on the properties of porous media and host fluids in reservoirs[J]. Petroleum and Natural Gas Chemical, 2021, 50(1): 72-76.
[5] 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13(4): 49-54.
[5] YANG Junjie, HUANG Sijing, ZHANG Wenzheng, et al. Experimental simulation of the dissolution and diagenesis process of carbonate rocks of different compositions under the temperature and pressure conditions of epigenetic and burial diagenesis[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54.
[6] 范明. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J]. 沉积学报, 2007, 25(6): 825-830.
[6] FAN Ming. Dissolution of carbonate rocks by CO2 aqueous solution at different temperatures[J]. Chinese Journal of Sedimentology, 2007, 25(6): 825-830.
[7] 高建文. 酸性溶液对碳酸盐岩溶蚀实验[J]. 辽宁化工, 2016 45(3): 254-256.
[7] GAO Jianwen. Experiment on the dissolution of carbonate rock by acidic solution[J]. Liaoning Chemical Industry, 2016, 45(3): 254-256.
[8] 李骞, 张钰祥, 李滔, 等. 基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J]. 油气地质与采收率, 2021, 28(3): 53-61.
[8] LI Qian, ZHANG Yuxiang, LI Tao, et al. A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores: A case study of Qixia Formation in Northwest Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 53-61.
[9] 刘大伟, 康毅力, 何健, 等. 碳酸盐岩储层水敏性实验评价及机理探讨[J]. 天然气工业, 2007, 27(2): 32-35.
[9] LIU Dawei, KANG Yili, HE Jian, et al. Experimental evaluation and mechanism evaluation of water sensitivity in carbonate reservoirs[J]. Natural Gas Industry, 2007, 27(2): 32-35.
[10] 李天太, 王清华, 张喜凤, 等. 塔中奥陶系碳酸盐岩储层敏感性实验研究[J]. 特种油气藏, 2005, 12(4): 79-82.
[10] LI Tiantai, WANG Qinghua, ZHANG Xifeng, et al. Experimental study on the sensitivity of Ordovician carbonate reservoirs in Tazhong[J]. Special Oil and Gas Reservoirs, 2005, 12(4): 79-82.
[11] 郭冀隆. 二氧化碳地质封存过程中CO2—水—岩相互作用实验研究[D]. 北京: 中国地质大学(北京), 2017.
[11] GUO Jilong. Experimental study on CO2-water-rock interaction in the geological storage process of carbon dioxide[D]. Beijing: China University of Geosciences(Beijing), 2017.
[12] SUN Y P, WEI L N, DAI C L, et al. The carbonic acid-rock reaction in feldspar/dolomite-rich tightsand and its impact on CO2-water relative permeability during geological carbon storage[J]. Chemical Geology, 2021, 584: 120527.
[13] 李新勇, 吴恒川, 房好青, 等. 微观结构差异对碳酸盐岩酸蚀损伤的影响[J]. 新疆石油地质, 2021, 42(2): 188-193.
[13] LI Xinyong, WU Hengchuan, FANG Haoqing, et al. Effects of microstructural differences on acid erosion damage of carbonate rocks[J]. Xinjiang Petroleum Geology, 2021, 42(2): 188-193.
[14] 兰天庆, 马媛媛, 贡同, 等. 超临界状态CO2封存技术研究进展[J]. 应用化工, 2019, 48(6): 1451-1455.
[14] LAN Tianqing, MA Yuanyuan, GONG Tong, et al. Research progress on supercritical CO2 storage technology[J]. Applied Chemical Industry, 2019, 48(6): 1451-1455.
[15] IGLESIAS R S, KETZER J M, MARASCHIN A J, et al. Characterization and modeling of CO2-water-rock interactions in Hygiene Sandstones(Upper Cretaceous), Denver Basin, aimed for carbon dioxide geological storage[J]. Greenhouse Gases: Science and Technology, 2018, 8(4): 781-795.
[16] JIA B, CHEN Z L, XIAN C G. Investigations of CO2 storage capacity and flow behavior in shale formation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109659.
[17] 李会元. 废弃油气藏CO2埋存过程中盖层完整性的评价[D]. 大庆: 东北石油大学, 2015.
[17] LI Huiyuan. Evaluation of caprock integrity during CO2 burial of abandoned oil and gas reservoirs[D]. Daqing: Northeast Petroleum University, 2015.
[18] IZGEC O, DEMIRAL B, BERTIN H, et al. CO2 injection into saline carbonate aquifer formations Ⅰ: Laboratory investigation[J]. Transport in Porous Media, 2008, 72(1): 1-24.
[19] 张星, 毕义泉, 汪庐山, 等. 黏土矿物膨胀机理及防膨研究现状[J]. 精细石油化工进展, 2014, 15(5): 39-43.
[19] ZHANG Xing, BI Yiquan, WANG Lushan, et al. Research status of clay mineral expansion mechanism and expansion prevention[J]. Advances in Fine Petrochemical Industry, 2014, 15(5): 39-43.
[20] 李四海, 马新仿, 张士诚, 等. CO2-水-岩作用对致密砂岩性质与裂缝扩展的影响[J]. 新疆石油地质, 2019, 40(3): 312-318.
[20] LI Sihai, MA Xinfang, ZHANG Shicheng, et al. Effects of CO2-water-rock action on properties and fracture propagation of tight sandstone[J]. Xinjiang Petroleum Geology, 2019, 40(3): 312-318.
[21] 吴春正, 薛海涛, 卢双舫, 等. 几种常见矿物的油-水-矿物接触角测量及其讨论[J]. 现代地质, 2018, 32(4): 842-849.
[21] WU Chunzheng, XUE Haitao, LU Shuangfang, et al. Oil-water-mineral contact angle measurement and discussion of several common minerals[J]. Modern Geology, 2018, 32(4): 842-849.
[22] 崔强, 程永锋, 鲁先龙, 等. 强风化岩中挖孔基础抗拔试验及荷载位移曲线模型参数研究[J]. 岩土力学, 2018, 39(12): 4597-4604.
[22] CUI Qiang, CHENG Yongfeng, LU Xianlong, et al. Uplift test of excavated foundation in strongly weathered rock and study on load displacement curve model parameters[J]. Rock and Soil Mechanics, 2018, 39(12): 4597-4604.
Outlines

/