Comprehensive Research

Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin

  • Zhanghua LOU ,
  • Xinke ZHANG ,
  • Yuchen WU ,
  • Yuqiao GAO ,
  • Peixian ZHANG ,
  • Aimin JIN ,
  • Rong ZHU
Expand
  • 1. Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
    2. Research Institute of Exploration & Development, Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210011, China

Received date: 2022-03-07

  Online published: 2023-09-01

Abstract

The exploration and development of shale gas in Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in Nanchuan and its adjacent blocks have yielded fruitful results. However, it is crucial to pay closer attention to the comprehensive use of fluid characteristics for analyzing the differences in shale gas preservation conditions in each block. Research findings reveal the following key points: ① With the prolongation of recovery time, the mineralization degree of the produced water gradually increases, exhibiting notable differences from fracturing fluid. This suggests the presence of the presence of movable CaCl2-rich formation water in shale layer, characterized by a mineralization degree exceeding 50 g/L; ② Enriched and high-yield wells exhibit low water production, low mineralization and rich in NaHCO3, which are indicative of condensate water; ③ Under different preservation conditions, the deuterium oxygen isotopes of the produced water vary with time. The high pressure stable block in the basin gradually deviates from the atmospheric precipitation line, while the normal(low) pressure complex block outside the basin remains close to the atmospheric precipitation line; ④ From the inside to the outside of the basin and from deep to shallow, the homogenization temperature of fluid inclusions in shale fracture filled calcite veins gradually decreases(from 240 ℃ to 90 ℃). Simultaneously, the metamorphism coefficient of the inclusions also gradually increases, reflecting the degree of differential damage of shale gas preservation conditions.

Cite this article

Zhanghua LOU , Xinke ZHANG , Yuchen WU , Yuqiao GAO , Peixian ZHANG , Aimin JIN , Rong ZHU . Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(4) : 451 -458 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.006

References

[1] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
[1] ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in Chin[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[2] 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012, 19(3): 280-294.
[2] NIE Haikuan, BAO Shujing, GAO Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012, 19(3): 280-294.
[3] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
[3] GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China: Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[4] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
[4] GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
[5] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
[5] MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
[6] 何治亮, 聂海宽, 蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发, 2021, 11(2): 135-145.
[6] HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145.
[7] 黄开展, 刘薇. 南川地区龙马溪组海相页岩孔隙特征精细描述及分形特征分析——以胜页1井为例[J]. 中国海上油气, 2022, 34(5): 64-71.
[7] HUANG Kaizhan, LIU Wei. Pore structure and fractal characteristics of marine shale in Longmaxi Formation, Nanchuan area: A case study of Well SY-1[J]. China Offshore Oil and Gas, 2022, 34(5): 64-71.
[8] 刘崇禧. 水化学找油的理论与应用效果[J]. 地球化学, 1989, 18(2): 175-180.
[8] LIU Chongxi. Hydrochemical exploration of oils: Its principle and application[J]. Geochemica, 1989, 18(2): 175-180.
[9] 刘方槐, 颜婉荪. 油气田水文地质学原理[M]. 北京: 石油工业出版社, 1991.
[9] LIU Fanghuai, YAN Wansun. Principles of hydrogeology of oil & gas fields[M]. Beijing: Petroleum Industry Press, 1991.
[10] 李明诚. 沉积盆地中的流体[J]. 石油学报, 2001, 22(4): 13-17.
[10] LI Mingcheng. Fluid in the sedimentary basin[J]. Sinica, 2001, 22(4): 13-17.
[11] 楼章华, 金爱民, 付孝悦. 海相地层水文地球化学与油气保存条件评价[J]. 浙江大学学报(工学版), 2006, 40(3): 501-505.
[11] LOU Zhanghua, JIN Aimin, FU Xiaoyue. Study on hydrogeochemistry and evaluation technology of petroleum preservation conditions for marine strata[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(3): 501-555.
[12] 楼章华, 朱蓉. 中国南方海相地层水文地质地球化学特征与油气保存条件[J]. 石油与天然气地质, 2006, 27(5): 584-593.
[12] LOU Zhanghua, ZHU Rong. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions in marine strata in southern China[J]. Oil & Gas Geology, 2006, 27(5): 584-593.
[13] 马永生, 楼章华, 郭彤楼, 等. 中国南方海相地层油气保存条件综合评价技术体系探讨[J]. 地质学报, 2006, 85(3): 406-417.
[13] MA Yongsheng, LOU Zhanghua, GUO Tonglou, et al. An exploration on a technological system of petroleum preservation evaluation for marine strata in South China[J]. Acta Geologica Sinica, 2006, 85(3): 406-417.
[14] 徐振平, 梅廉夫. 川东北地区不同构造带地层水化学特征与油气保存的关系[J]. 海相油气地质, 2006, 11(4): 29-33.
[14] XU Zhen ping, MEI Lianfu. Relationship between chemical features of formation water and hydrocarbon preservation in different structural areas in northeast part of Sichuan basin[J]. Marine Origin Petroleum Geology, 2006, 11(4): 29-33.
[15] 金爱民, 尚长健, 李梅, 等. 桂中坳陷现今水文地质地球化学与油气保存[J]. 浙江大学学报(工学版), 2011, 45(4): 775-781.
[15] JIN Aimin, SHANG Changjian, LI Mei, et al. Present hydrogeological-hydrogeochemical characters and hydrocarbon preservation conditions of Guizhong depression[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(4): 775-781.
[16] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区页岩气保存条件分析[J]. 油气地质与采收率, 2019, 26(2): 24-31.
[16] HE Shun, QIN Qirong, FAN Cunhui, et al. Shale gas preservation conditions in Dingshan area, Southeastern Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 24-31.
[17] 姜磊, 邓宾, 刘树根, 等. 焦石坝—武隆构造带古流体活动差异及对页岩气保存条件的影响[J]. 地球科学, 2019, 44(2): 524-538.
[17] JIANG Lei, DENG Bin, LIU Shugen, et al. Paleo-fluid migration and conservation conditions of shale gas in Jiaoshiba-Wulong Area[J]. Earth Science, 2019, 44(2): 524-538.
[18] 黎琼, 欧光习, 汪生秀, 等. 渝东南地区五峰组—龙马溪组页岩气储层流体地球化学特征——以酉参2井为例[J]. 地球科学与环境学报, 2019, 41(5): 529-540.
[18] LI Qiong, OU Guangxi, WANG Shengxiu, et al. Geochemical characteristics of fluid from shale gas reservoir of Wufeng-Longmaxi Formations in the Southeastern Chongqing, China: A case study of Well YC2[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 529-540.
[19] 张光荣, 聂海宽, 唐玄, 等. 基于地层水指标的页岩气保存条件评价[J]. 油气藏评价与开发, 2021, 11(1): 47-55.
[19] ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in Southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1): 47-55.
[20] 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12): 1-14.
[20] HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12): 1-14.
[21] 余光春, 魏祥峰, 李飞, 等. 上扬子地区断裂活动对页岩气保存的破坏作用[J]. 石油实验地质, 2020, 42(3): 355-362.
[21] YU Guangchun, WEI Xiangfeng, LI Fei, et al. Disruptive effects of faulting on shale gas preservation in upper Yangtze region[J]. Petroleum Geology & Experiment, 2020, 42(3): 355-362.
Outlines

/