Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (4): 451-458.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.006
• Comprehensive Research • Previous Articles Next Articles
LOU Zhanghua1(),ZHANG Xinke1,WU Yuchen1,GAO Yuqiao2,ZHANG Peixian2,JIN Aimin1,ZHU Rong1()
Received:
2022-03-07
Online:
2023-08-26
Published:
2023-09-01
CLC Number:
LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin[J].Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458.
Table 1
Production data statistics of shale gas well in Nanchuan and its adjacent blocks"
构造 | 井号 | 日产气量/m3 | 日产液量/m3 | 返排率/ % | 生产天数/ d | 矿化度/ (mg/L) | 压力系数 | 测试产气量/ (104 m3/d) |
---|---|---|---|---|---|---|---|---|
平桥背斜南主体 | 焦页195-3HF | 91 634.60 | 4.67 | 21.27 | 1 364 | 21 904.22 | 1.32 | 31.70 |
焦页200-1HF | 68 302.99 | 2.83 | 12.77 | 1 438 | 20 360.20 | 1.31 | 89.50 | |
焦页195-1HF | 59 651.44 | 2.17 | 13.71 | 1 492 | 17 257.76 | 1.32 | 22.70 | |
焦页194-3HF | 58 414.23 | 1.57 | 9.87 | 1 428 | 18 726.96 | 1.32 | 34.30 | |
平桥西断裂带 | 焦页205-1HF | 19 998.40 | 14.77 | 49.21 | 1 069 | 31 851.41 | 1.35 | 10.70 |
平桥南斜坡 | 焦页10-10HF | 37 466.71 | 10.24 | 33.29 | 872 | 17 842.94 | 1.12 | 9.01 |
焦页10HF | 35 007.39 | 15.44 | 37.98 | 903 | 25 112.94 | 1.18 | 19.60 | |
东胜背斜 | 胜页9-1HF | 65 430.77 | 11.94 | 34.40 | 512 | 15 651.15 | 1.14 | 10.03 |
胜页2HF | 64 987.63 | 14.61 | 28.10 | 874 | 20 231.05 | 1.20 | 32.80 | |
武隆向斜 | 隆页1HF | 17 335.89 | 4.93 | 31.18 | 2 160 | 40 002.21 | 1.08 | 4.60 |
隆页2HF | 17 059.74 | 6.11 | 38.11 | 1 149 | 35 397.58 | 1.06 | 9.20 | |
隆页3HF | 12 223.55 | 107.98 | 19.93 | 88 | 38 865.91 | 1.08 | 7.20 | |
桑柘坪向斜 | 彭页3HF | 3 008.36 | 5.83 | 31.77 | 2 488 | 31 407.42 | 1.05 | 3.80 |
Table 2
Relationship between the geochemical characteristics of fluid inclusions in calcite veins filling fractures and testing in the Nanchuan Block"
井名 | 送样编号 | 深度/ m | 层位 | Na+/ (μg/g) | K+/ (μg/g) | Mg2+/ (μg/g) | Ca2+/ (μg/g) | F- / (μg/g) | Cl-/ (μg/g) | NO3-/ (μg/g) | SO42-/ (μg/g) | 变质 系数 | 地层压力系数 | 测试产气量/(104 m3/d) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
焦页10-10 | JY10-10-3 | 2 633.80 | S1l | 124.0 | 70.40 | 2.000 | 22.1 | 0.332 | 19.60 | 2.240 | 374 | 9.63 | 1.12 | 9.01 |
JY10-10-4 | 2 674.80 | S1l | 134.0 | 143.00 | 11.300 | 153.0 | 1.090 | 15.40 | 2.920 | 841 | 13.24 | |||
JY10-10-6 | 2 702.70 | S1l | 163.0 | 117.00 | 9.160 | 51.3 | 1.280 | 14.70 | 2.490 | 597 | 16.87 | |||
胜页3 | SY3-6 | 2 872.03 | S1l | 228.0 | 39.50 | 1.590 | 19.2 | 0.550 | 14.90 | 2.720 | 490 | 23.29 | 1.15 | 7.10 |
SY3-8 | 2 966.00 | S1l | 39.4 | 27.20 | 16.200 | 160.0 | 0.489 | 25.90 | 1.690 | 535 | 2.31 | |||
SY3-9 | 2 969.50 | S1l | 82.6 | 41.50 | 21.700 | 327.0 | 0.774 | 31.00 | 12.800 | 1 077 | 4.05 | |||
焦页10 | JY10-1 | 3 296.00 | S1l | 87.8 | 82.90 | 4.510 | 84.3 | 0.512 | 20.10 | 3.620 | 436 | 6.65 | 1.18 | 19.60 |
JY10-3 | 3 373.90 | S1l | 98.9 | 79.10 | 18.900 | 85.7 | 0.677 | 24.80 | 3.390 | 499 | 6.07 | |||
JY10-6 | 3 399.40 | S1l | 6.71 | 4.78 | 0.955 | 13.4 | 0.144 | 5.11 | 0.761 | 861 | 2.00 | |||
焦页194-3 | JY194-3-6 | 2 664.70 | S1l | 20.8 | 20.70 | 1.710 | 33.5 | 0.765 | 24.00 | 0.904 | 84 | 1.32 | 1.32 | 34.30 |
JY194-3-10 | 2 695.63 | S1l | 187.0 | 154.00 | 15.500 | 727.0 | 0.722 | 40.10 | 19.100 | 2 389 | 7.10 | |||
JY194-3-11 | 2 701.30 | O2b | 36.0 | 65.60 | 22.000 | 443.0 | 1.280 | 10.80 | 8.650 | 1 317 | 5.07 | |||
焦页205-2 | JY205-2HF-5 | 1 181.30 | P1m | 27.7 | 3.86 | 17.600 | 52.0 | 5.240 | 46.50 | 2.540 | 135 | 0.91 | 1.35 | 10.88 |
JY205-2HF-12 | 1 238.04 | P1m | 15.9 | 2.54 | 20.200 | 56.1 | 5.350 | 13.30 | 2.280 | 215 | 1.82 | |||
JY205-2HF-13 | 1 243.30 | P1m | 10.7 | 8.73 | 3.280 | 12.0 | 7.090 | 18.40 | 6.020 | 1 033 | 0.88 |
[1] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in Chin[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
|
[2] | 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012, 19(3): 280-294. |
NIE Haikuan, BAO Shujing, GAO Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012, 19(3): 280-294. | |
[3] | 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. |
GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China: Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. | |
[4] | 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. |
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. | |
[5] |
马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
doi: 10.11698/PED.2018.04.03 |
MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
doi: 10.11698/PED.2018.04.03 |
|
[6] | 何治亮, 聂海宽, 蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发, 2021, 11(2): 135-145. |
HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145. | |
[7] | 黄开展, 刘薇. 南川地区龙马溪组海相页岩孔隙特征精细描述及分形特征分析——以胜页1井为例[J]. 中国海上油气, 2022, 34(5): 64-71. |
HUANG Kaizhan, LIU Wei. Pore structure and fractal characteristics of marine shale in Longmaxi Formation, Nanchuan area: A case study of Well SY-1[J]. China Offshore Oil and Gas, 2022, 34(5): 64-71. | |
[8] | 刘崇禧. 水化学找油的理论与应用效果[J]. 地球化学, 1989, 18(2): 175-180. |
LIU Chongxi. Hydrochemical exploration of oils: Its principle and application[J]. Geochemica, 1989, 18(2): 175-180. | |
[9] | 刘方槐, 颜婉荪. 油气田水文地质学原理[M]. 北京: 石油工业出版社, 1991. |
LIU Fanghuai, YAN Wansun. Principles of hydrogeology of oil & gas fields[M]. Beijing: Petroleum Industry Press, 1991. | |
[10] |
李明诚. 沉积盆地中的流体[J]. 石油学报, 2001, 22(4): 13-17.
doi: 10.7623/syxb200104003 |
LI Mingcheng. Fluid in the sedimentary basin[J]. Sinica, 2001, 22(4): 13-17.
doi: 10.7623/syxb200104003 |
|
[11] | 楼章华, 金爱民, 付孝悦. 海相地层水文地球化学与油气保存条件评价[J]. 浙江大学学报(工学版), 2006, 40(3): 501-505. |
LOU Zhanghua, JIN Aimin, FU Xiaoyue. Study on hydrogeochemistry and evaluation technology of petroleum preservation conditions for marine strata[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(3): 501-555. | |
[12] | 楼章华, 朱蓉. 中国南方海相地层水文地质地球化学特征与油气保存条件[J]. 石油与天然气地质, 2006, 27(5): 584-593. |
LOU Zhanghua, ZHU Rong. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions in marine strata in southern China[J]. Oil & Gas Geology, 2006, 27(5): 584-593. | |
[13] | 马永生, 楼章华, 郭彤楼, 等. 中国南方海相地层油气保存条件综合评价技术体系探讨[J]. 地质学报, 2006, 85(3): 406-417. |
MA Yongsheng, LOU Zhanghua, GUO Tonglou, et al. An exploration on a technological system of petroleum preservation evaluation for marine strata in South China[J]. Acta Geologica Sinica, 2006, 85(3): 406-417. | |
[14] | 徐振平, 梅廉夫. 川东北地区不同构造带地层水化学特征与油气保存的关系[J]. 海相油气地质, 2006, 11(4): 29-33. |
XU Zhen ping, MEI Lianfu. Relationship between chemical features of formation water and hydrocarbon preservation in different structural areas in northeast part of Sichuan basin[J]. Marine Origin Petroleum Geology, 2006, 11(4): 29-33. | |
[15] | 金爱民, 尚长健, 李梅, 等. 桂中坳陷现今水文地质地球化学与油气保存[J]. 浙江大学学报(工学版), 2011, 45(4): 775-781. |
JIN Aimin, SHANG Changjian, LI Mei, et al. Present hydrogeological-hydrogeochemical characters and hydrocarbon preservation conditions of Guizhong depression[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(4): 775-781. | |
[16] | 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区页岩气保存条件分析[J]. 油气地质与采收率, 2019, 26(2): 24-31. |
HE Shun, QIN Qirong, FAN Cunhui, et al. Shale gas preservation conditions in Dingshan area, Southeastern Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 24-31. | |
[17] | 姜磊, 邓宾, 刘树根, 等. 焦石坝—武隆构造带古流体活动差异及对页岩气保存条件的影响[J]. 地球科学, 2019, 44(2): 524-538. |
JIANG Lei, DENG Bin, LIU Shugen, et al. Paleo-fluid migration and conservation conditions of shale gas in Jiaoshiba-Wulong Area[J]. Earth Science, 2019, 44(2): 524-538. | |
[18] | 黎琼, 欧光习, 汪生秀, 等. 渝东南地区五峰组—龙马溪组页岩气储层流体地球化学特征——以酉参2井为例[J]. 地球科学与环境学报, 2019, 41(5): 529-540. |
LI Qiong, OU Guangxi, WANG Shengxiu, et al. Geochemical characteristics of fluid from shale gas reservoir of Wufeng-Longmaxi Formations in the Southeastern Chongqing, China: A case study of Well YC2[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 529-540. | |
[19] | 张光荣, 聂海宽, 唐玄, 等. 基于地层水指标的页岩气保存条件评价[J]. 油气藏评价与开发, 2021, 11(1): 47-55. |
ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in Southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1): 47-55. | |
[20] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12): 1-14. |
HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12): 1-14. | |
[21] | 余光春, 魏祥峰, 李飞, 等. 上扬子地区断裂活动对页岩气保存的破坏作用[J]. 石油实验地质, 2020, 42(3): 355-362. |
YU Guangchun, WEI Xiangfeng, LI Fei, et al. Disruptive effects of faulting on shale gas preservation in upper Yangtze region[J]. Petroleum Geology & Experiment, 2020, 42(3): 355-362. |
[1] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[2] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[3] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[4] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[5] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[6] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[7] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[8] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[9] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[10] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[11] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
[12] | ZHANG Longsheng,WANG Weiheng. Study and application of a high temperature foaming agent in anionic-nonionic system namely HDHP: A case study of shale gas wells in Dongsheng Block, Sichuan Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 240-246. |
[13] | ZHAO Renwen,XIAO Dianshi,LU Shuangfang,ZHOU Nengwu. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example [J]. Reservoir Evaluation and Development, 2023, 13(1): 52-63. |
[14] | LI Ying,LI Maomao,LI Haitao,YU Hao,ZHANG Qihui,LUO Hongwen. Physicochemical mechanism of water phase imbibition in shale reservoirs [J]. Reservoir Evaluation and Development, 2023, 13(1): 64-73. |
[15] | HE Feng,FENG Qiang,CUI Yushi. Production schedule optimization of gas wells in W shale gas reservoir under controlled pressure difference based on numerical simulation [J]. Reservoir Evaluation and Development, 2023, 13(1): 91-99. |
|