Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 5: 741 - 748
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.05.009
Prediction and evaluation method for development effect of shale oil storage volume fracturing
Received date: 2024-04-18
Online published: 2024-10-11
Energy storage volume fracturing is a pivotal early development technique for shale reservoirs, designed to supplement reservoir energy preemptively and significantly boost single well production. A method for predicting the maximum cumulative oil production during the development stage of energy storage fracturing is proposed, based on the mechanisms of imbibition and displacement coupled with the statistical analysis of actual production data. The results demonstrate that following a 30% flowback ratio, the cumulative oil production from energy storage fracturing exhibits a strong linear relationship with the logarithm of the flowback ratio. This relationship can predict the maximum cumulative oil production of a single well after fracturing. Validated by actual production data from other shale reservoirs, this method proves to be more accurate and universal than the decline curve analysis method. It encompasses a comprehensive evaluation of subjective and objective factors such as reservoir conditions, fracturing scale and technology, production system design, and drainage efficiency. Additionally, the method facilitates the determination of the liquid-to-oil ratio and the reasonable flowback rate. By controlling the average rate of discharge and production within the range of 6~8 m3/(d·km), which aligns with the rates of oil drainage and imbibition, higher oil recovery and a lower liquid-to-oil ratio are achieved. This prediction method for maximum recoverable oil post-single well fracturing provides a basis for the economic benefit evaluation, production system optimization, and fracturing cost control of energy storage fracturing. It holds significant guiding importance for geological-engineering integration, well spacing optimization, and fracturing design.
Key words: flowback ratio; energy storage; fracturing; oil recovery; cumulative oil production
XU Ning , CHEN Zhewei , XU Wanchen , WANG Ling , CUI Xiaolei , JIANG Meizhong , ZHAN Changwu . Prediction and evaluation method for development effect of shale oil storage volume fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(5) : 741 -748 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.009
[1] | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. | |
[2] | 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019, 46(1): 139-145. |
LEI Qun, WEND Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1): 139-145. | |
[3] | 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. |
JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. | |
[4] | 陈祥, 王敏, 严永新, 等. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. |
CHEN Xiang, WANG Min, YAN Yongxin, et al. Accumulation conditions for continental shale oil and gas in the Biyang Depression[J]. Oil & Gas Geology, 2011, 32(4): 568-576. | |
[5] | 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质, 2021, 42(5): 1181-1187. |
Jiao fangzheng. Research on shale oil fracture net sweep in Ordos Basin and its application in volume development[J]. Oil & Gas Geology, 2021, 42(5): 1181-1187. | |
[6] | 路向伟, 王力, 郑奎, 等. X油田A83 C7页岩油储层高效开发技术评价与分析[J]. 化学工程与装备, 2021, 1(10): 95-97. |
LU Xiangwei, WANG Li, ZHENG Kui, etc. Evaluation and analysis of high efficiency development technology for A83 C7 shale oil reservoir in X oilfield[J]. Chemical Engineering & Equipment, 2021, 1(10) : 95-97. | |
[7] | 常凌云. 基于决策树算法的压裂井判别及效果预测方法研究[J]. 中国管理信息化, 2021, 24(6): 113-114. |
Chang Lingyun. Research on decision tree algorithm-based method for distinguishing and predicting fracturing wells[J]. China Management Informationization, 2021, 24(6): 113-114. | |
[8] | 李凯凯, 安然, 岳潘东, 等. 安83区页岩油水平井大规模蓄能体积压裂技术[J]. 石油钻探技术, 2021, 49(4): 125-129. |
LI Kaikai, AN Ran, YUE Pandong, et al. Large scale energy storage volumetric fracturing technology for horizontal wells in the An 83 shale reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. | |
[9] | 张衍君, 邹易, 董正亮, 等. 页岩油储层压裂井间干扰条件下受干扰井排采特征: 以吉木萨尔页岩油储层为例[J]. 石油钻采工艺, 2023, 45(1): 108-115. |
ZHANG Yanjun, ZOU Yi, DONG Zhengliang, et al. Production characteristic of interfered well under inter-well fracturing interference in shale oil reservoir: A case study on Jimusaer shale oil reservoir[J]. Oil Drilling & Production Technology, 2023, 45(1): 108-115. | |
[10] | 王欣, 才博, 李帅, 等. 中国石油油气藏储层改造技术历程与展望[J]. 石油钻采工艺, 2023, 45(1): 67-75. |
WANG Xin, CAI Bo, LI Shuai, et al. Development process and prospect of CNPC's reservoir stimulation technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 67-75. | |
[11] | 张矿生, 王文雄, 徐晨, 等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程, 2013, 13(35): 10475-10480. |
ZHANG Kuangsheng, WANG Wenxiong, XU Cheng, et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 13(35): 10475-10480. | |
[12] | 张芮菡, 张烈辉, 卢晓敏, 等. 低渗透裂缝性油藏压裂水平井产能动态分析[J]. 科学技术与工程, 2014, 14(16): 41-48. |
ZHANG Ruihan, ZHANG Liehui, LU Xiaomin, et al. Deliverability analysis of fractured horizontal wells in low permeability fractured reservoir[J]. Science Technology and Engineering, 2014, 14(16): 41-48. | |
[13] | 刘子雄, 王艳红, 高杰, 等. 基于压裂返排数据的有效破裂体积计算方法[J]. 石油地质与工程, 2019, 33(2): 112-115. |
LIU Zixiong, WANG Yanhong, GAO Jie, et al. New calculation method of effective fracture volume based on fracture flowback data[J]. Petroleum Geology & Engineering, 2019, 33(2): 112-115. | |
[14] | BUCKLEY S E, LEVERETT M C. Mechanism of fluid displacements in sands[J]. Transactions of the AIME, 1942, 146(1): 107-116. |
[15] | WELGE H J. A simplified method for computing oil recovery by gas or water drive[J]. Journal of Petroleum Technology, 1952, 4(4): 91-98. |
[16] | 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. | |
[17] | 许宁, 满安静, 徐萍, 等. 非常规油藏补能提采开发方式研究进展及路径优选[J]. 中外能源, 2023, 28(8): 38-42. |
XU Ning, MAN Anjing, XU Ping, et al. Research progress and path optimization of enhanced oil recovery by energy supplement in unconventional reservoirs[J]. Sino-Global Energy, 2023, 28(8): 38-42. | |
[18] | 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078. |
JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078. | |
[19] | 邱润东, 顾春元, 薛佩雨, 等. 不同渗透率砂岩岩心在纳米流体中的渗吸特征[J]. 石油勘探与开发, 2022, 49(2): 330-337. |
QIU Rundong, GU Chunyuan, XUE Peiyu, et al. Imbibition characteristics of sandstone cores with different permeabilities in nanofluids[J]. Petroleum Exploration and Development, 2022, 49(2): 330-337. | |
[20] | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. |
JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. | |
[21] | 黄兴, 窦亮彬, 左雄娣, 等. 致密油藏裂缝动态渗吸排驱规律[J]. 石油学报, 2021, 42(7): 924-935. |
HUANG Xing, DOU Liangbin, ZUO Xiongdi, et al. Dynamic imbibition and drainage law of fractures in tight reservoirs[J]. Acta Petrolei Sinica, 2021, 42(7): 924-935. | |
[22] | 杜猛, 杨正明, 吕伟峰, 等. 基质裂缝耦合下的致密油/页岩油动态渗流实验[J]. 石油勘探与开发, 2024, 51(2): 356-366. |
DU Meng, YANG Zhengming, LYU Weifeng, et al. Experiment of dynamic seepage of tight/shale oil under matrix fracture coupling[J]. Petroleum Exploration and Development, 2024, 51(2): 356-366. | |
[23] | 虞绍永. 页岩及致密油气藏工程方法[M]. 北京: 石油工业出版社, 2018. |
YU Shaoyong. Shale and tight reservoir engineering method[M]. Beijing: Petroleum Industry Press, 2018. | |
[24] | 雷浩, 郑有恒, 何建华, 等. 页岩油藏流体渗流特征物理模拟新方法[J]. 石油学报, 2021, 42(10): 1346-1356. |
LEI Hao, ZHENG Youheng, HE Jianhua, et al. A new method for physical simulation of flow characteristics of fluids In shale oil reservoirs[J]. Acta Petrolei Sinica, 2021, 42(10): 1346-1356. | |
[25] | 刘惠民, 于炳松, 谢忠怀, 等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义: 以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343. |
LIU Huimin, YU Bingsong, XIE Zhonghuai, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: A case study of Jiyang depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343. | |
[26] | 张顺, 刘惠民, 王敏, 等. 东营凹陷页岩油储层孔隙演化[J]. 石油学报, 2018, 39(7): 754-766. |
ZHANG Shun, LIU Huimin, WANG Min, et al. Pore evolution of Shale oil reservoirs in Dongying sag[J]. Acta Petrolei Sinica, 2018, 39(7): 754-766. | |
[27] | 戚超, 王晓琦, 王威, 等. 页岩储层微观裂缝三维精细表征方法[J]. 石油学报, 2018, 39(10): 1175-1185. |
QI Chao, WANG Xiaoqi, WANG Wei, et al. Three dimensional fine characterization method of micro fractures in shale reservoirs[J]. Acta Petrolei Sinica, 2018, 39(10): 1175-1185. | |
[28] | 周福建, 苏航, 梁星原, 等. 致密油储集层高效缝网改造与提高采收率一体化技术[J]. 石油勘探与开发, 2019, 46(5): 1007-1014. |
ZHOU Fujian, SU Hang, LIANG Xingyuan, et al. Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks[J]. Petroleum Exploration and Development, 2019, 46(5): 1007-1014. |
/
〈 | 〉 |