Petroleum Reservoir Evaluation and Development >
2025 , Vol. 15 >Issue 3: 406 - 416
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.007
Study on rock mechanical properties of deep shale gas reservoirs based on multi-mechanical experiments
Received date: 2024-07-11
Online published: 2025-05-28
The southeastern Sichuan region is characterized by complex tectonic structures. The shale gas reservoir from the first member of the upper Ordovician Wufeng Formation to the Lower Silurian Longmaxi Formation is buried at considerable depths, which significantly affects the rock mechanical properties. However, systematic studies remain limited. This study focuses on the deep shale gas reservoir in the Lintanchang area of southeastern Sichuan. A series of mechanical experiments, including triaxial compressive tests, acoustic wave velocity measurements, tensile strength tests, and fracture toughness tests, were carried out. Based on the results of these multi-mechanical experiments, the rock mechanical properties of shale samples were analyzed, and a vertical mechanical property profile for a single well was established. With increasing temperature and pressure, the residual stress after fracture, Young’s modulus, and Poisson’s ratio of the deep shale samples showed an upward trend. The post-peak stress-strain curves exhibited more pronounced fluctuations. Acoustic wave velocities at the plunging end of the Lintanchang anticline were lower than those at the flanks. Young’s modulus and Poisson’s ratio values, corrected using a dynamic-static linear transformation, exhibited improved accuracy. The maximum load borne by the deep shale samples was less than 10 kN. Type Ⅰ and Type Ⅱ fractures displayed notable differences in propagation characteristics, and the degree of fracture penetration was greatly affected by sampling direction. The vertical mechanical profile of well T4 revealed that the bottom section of the first member of the Wufeng-Longmaxi Formation has higher Young’s modulus, lower Poisson’s ratio, and stronger brittleness, while the compressive and tensile strengths, as well as the fracture toughness index, remain relatively low. These mechanical properties show a weak compressive-tensile state, providing favorable conditions for reservoir stimulation. Thus, this interval represents an optimal target for future exploration and development.
FENG Shaoke , XIONG Liang . Study on rock mechanical properties of deep shale gas reservoirs based on multi-mechanical experiments[J]. Petroleum Reservoir Evaluation and Development, 2025 , 15(3) : 406 -416 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.007
1 | WANG Z Y, CHEN L, CHEN D X, et al. Characterization and evaluation of shale lithofacies within the lowermost Longmaxi-Wufeng Formation in the Southeast Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107353. |
2 | 徐凤生, 王富平, 张锦涛, 等. 我国深层页岩气规模效益开发策略[J]. 天然气工业, 2021, 41(1): 205-213. |
XU Fengsheng, WANG Fuping, ZHANG Jintao, et al. Strategies for scale benefit development of deep shale gas in China[J], Natural Gas Industry, 2021, 41(1): 205-213. | |
3 | 唐建明, 何建华, 魏力民, 等. 川东南林滩场地区五峰组—龙马溪组页岩气藏压力演化及其地质意义[J]. 石油实验地质, 2023, 45(4): 739-750. |
TANG Jianming, HE Jianhua, WEI Limin, et al. Pressure evolution of shale gas reservoirs in Wufeng-Longmaxi formations, Lintanchang area, southeast Sichuan Basin and its geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 739-750. | |
4 | 葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组—龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area,southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647. | |
5 | LI G F, JIN Z J, LI X, et al. Experimental study on mechanical properties and fracture characteristics of shale layered samples with different mineral components under cyclic loading[J]. Marine and Petroleum Geology, 2023, 150: 106114. |
6 | ALTINDAG R. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 361-370. |
7 | 方志坚, 巴晶, 熊繁升, 等. 利用机器学习与改进岩石物理模型预测页岩油层系横波速度[J]. 石油地球物理勘探, 2024, 59(3): 381-391. |
FANG Zhijian, BA Jing, XIONG Fansheng, et al. Shear wave velocity prediction of shale oil formations based on machine learning and improved rock physics model[J]. Oil Geophysical Prospecting, 2024, 59(3): 381-391. | |
8 | 赵进雍, 冀冬生, 吴见, 等. 准噶尔盆地四棵树凹陷侏罗系—白垩系储层岩石力学参数研究[J]. 地质力学学报, 2022, 28(4): 573-582. |
ZHAO Jinyong, JI Dongsheng, WU Jian, et al. Research on rock mechanics parameters of the Jurassic-Cretaceous reservoir in the Sikeshu sag, Junggar Basin, China[J]. Journal of Geomechanics, 2022, 28(4): 573-582. | |
9 | 张庄, 宋晓波, 苏成鹏, 等. 四川盆地中二叠统茅口组一段岩石微相特征及储层成因: 以华蓥山二崖剖面为例[J]. 断块油气田, 2023, 30(3): 405-414. |
ZHANG Zhuang, SONG Xiaobo, SU Chengpeng, et al. Characteristics of rock microfacies and reservoir genesis of the first Member of Middle Permian Maokou Formation in Sichuan Basin: A case study of Erya section of Huaying Mountain[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 405-414. | |
10 | 刘震, 张军华, 于正军, 等. 非常规储层脆性研究进展及展望[J]. 石油地球物理勘探, 2023, 58(6): 1499-1507. |
LIU Zhen, ZHANG Junhua, YU Zhengjun, et al. Progress and prospects of brittleness research in unconventional reservoirs[J]. Oil Geophysical Prospecting, 2023, 58(6): 1499-1507. | |
11 | CHANG C, ZOBACK M D, KHAKSAR A. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science & Engineering, 2006, 51(4): 223-237. |
12 | HOU L, LIU X, LIANG L, et al. Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103113. |
13 | MASRI M, SIBAI M, SHAO J F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 185-191. |
14 | 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527. |
YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527. | |
15 | 王聪, 黄世军, 赵凤兰, 等. 基于波前快速法的页岩气藏重复压裂储层动用评价方法[J]. 断块油气田, 2023, 30(6): 940-946. |
WANG Cong, HUANG Shijun, ZHAO Fenglan, et al. Reservoir evaluation method for refracturing in shale gas reservoir based on fast marching method[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 940-946. | |
16 | 唐俊方, 熊健, 刘向君, 等. 玛湖凹陷风城组岩石力学参数自适应权重组合预测[J]. 石油地球物理勘探, 2024, 59(1): 1-11. |
TANG Junfang, XIONG Jian, LIU Xiangjun, et al. Adaptive weight combination forecast of rock mechanical parameters in the Fengcheng Formation of Mahu Sag[J]. Oil Geophysical Prospecting, 2024, 59(1): 1-11. | |
17 | 刘建华, 吴超, 陶兴华. 钻井岩石力学参数三维建模方法及其现场应用[J]. 钻采工艺, 2020, 43(1): 13-16. |
LIU Jianhua, WU Chao, TAO Xinghua. Three-dimensional modeling method for drilling rock mechanics and its field application[J]. Drilling & Production Technology, 2020, 43(1): 13-16. | |
18 | 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846-866. |
LI Xibing, GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846-866. | |
19 | 王亮亮, 王杰祥, 张鹏, 等. 酸化气驱交变载荷对超深层岩石强度及出砂影响[J]. 断块油气田, 2023, 30(1): 136-142. |
WANG Liangliang, WANG Jiexiang, ZHANG Peng, et al. Influence of acidification, gas flooding and alternating load on rock strength and sand production in ultra-deep wells[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 136-142. | |
20 | 卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征: 以四川盆地东南部丁山地区下古生界五峰组—龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions: A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97. | |
21 | 徐向, 辛志源, 刘超, 等. 深层常压页岩气富集机制研究: 以涪陵页岩气田白马区块为例[J]. 石油地质与工程, 2024, 38(3): 53-60. |
XU Xiang, XIN Zhiyuan, LIU Chao, et al. Enrichment law of deep atmospheric shale gas: A case study of Baima syncline in Fuling shale gas field[J]. Petroleum Geology & Engineering, 2024, 38(3): 53-60. | |
22 | HUANG H Y, HE D, LI Y, et al. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions[J]. Marine and Petroleum Geology, 2018, 92: 403-423. |
23 | XIE H P, LU J, LI C B, et al. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review[J]. International Journal of Mining Science and Technology, 2022, 32(5): 915-950. |
24 | 尹帅, 单钰铭, 王哲, 等. Hoek-Brown准则在岩石抗压强度测井解释中的应用[J]. 桂林理工大学学报, 2014, 34(4): 659-665. |
YIN Shuai, SHAN Yuming, WANG Zhe, et al. Application of Hoek-Brown criterion in rock compressive strength logging interpretation[J]. Journal of Guilin University of Technology, 2014, 34(4): 659-665. | |
25 | 张昊天. 海相高成熟页岩储层岩石力学特征及脆性评价技术[D]. 成都: 成都理工大学, 2019. |
ZHANG Haotian. The evaluation technology of rock mechanics and brittleness characteristics for marine high mature shale reservoir[D]. Chengdu: Chengdu University of Technology, 2019. |
/
〈 |
|
〉 |