Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (3): 406-416.doi: 10.13809/j.cnki.cn32-1825/te.2025.03.007
• Oil and Gas Exploration • Previous Articles Next Articles
FENG Shaoke1,2(), XIONG Liang1(
)
Received:
2024-07-11
Online:
2025-05-28
Published:
2025-06-26
Contact:
XIONG Liang
E-mail:fsk962359370@163.com;xiongliang.xnyq@sinopec.com
CLC Number:
FENG Shaoke,XIONG Liang. Study on rock mechanical properties of deep shale gas reservoirs based on multi-mechanical experiments[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 406-416.
Table 1
Experimental results of triaxial rock mechanical tests on shale samples at different temperatures and pressures"
井号 | 样品号 | 小层 | 深度/m | 围压/MPa | 温度/℃ | 抗压强度/MPa | 静态杨氏模量/GPa | 静态泊松比 |
---|---|---|---|---|---|---|---|---|
T2 | T2-1 | ① | 3 026.26 | 15 | 30 | 175.99 | 31.69 | 0.233 |
T2-2 | ① | 3 026.26 | 30 | 60 | 246.16 | 32.56 | 0.238 | |
T2-3 | ① | 3 026.39 | 50 | 90 | 311.03 | 33.89 | 0.243 | |
T3 | T3-4 | ③ | 4 122.76 | 15 | 30 | 163.59 | 29.54 | 0.218 |
T3-5 | ③ | 4 122.76 | 30 | 60 | 186.89 | 31.19 | 0.235 | |
T3-6 | ③ | 4 122.76 | 50 | 90 | 230.98 | 32.78 | 0.251 | |
T3-16 | ② | 4 127.50 | 15 | 30 | 236.67 | 30.94 | 0.213 | |
T3-17 | ② | 4 127.50 | 30 | 60 | 288.84 | 31.08 | 0.231 | |
T3-18 | ② | 4 128.20 | 50 | 90 | 339.94 | 31.83 | 0.269 | |
T3-13 | ① | 4 132.00 | 15 | 30 | 261.51 | 31.36 | 0.209 | |
T3-14 | ① | 4 132.00 | 30 | 60 | 261.96 | 32.73 | 0.234 | |
T3-15 | ① | 4 132.00 | 50 | 90 | 387.65 | 34.43 | 0.237 | |
T3-19 | ① | 4 134.45 | 15 | 30 | 192.86 | 30.70 | 0.214 | |
T3-20 | ① | 4 134.45 | 30 | 60 | 255.53 | 35.76 | 0.251 | |
T3-21 | ① | 4 134.45 | 50 | 90 | 316.96 | 38.71 | 0.282 | |
T4 | T4-21 | ③ | 3 905.39 | 15 | 30 | 243.24 | 35.71 | 0.176 |
T4-23 | ③ | 3 905.39 | 30 | 60 | 272.86 | 39.79 | 0.196 | |
T4-24 | ③ | 3 906.48 | 50 | 90 | 300.79 | 40.78 | 0.207 | |
T5 | T5-25 | ③ | 2 874.35 | 15 | 30 | 123.23 | 29.80 | 0.225 |
T5-26 | ③ | 2 874.35 | 30 | 60 | 156.32 | 31.02 | 0.239 | |
T5-27 | ③ | 2 874.42 | 50 | 90 | 190.25 | 32.51 | 0.248 | |
T5-28 | ① | 2 884.31 | 15 | 30 | 127.82 | 30.48 | 0.207 | |
T5-29 | ① | 2 884.31 | 30 | 60 | 144.17 | 31.82 | 0.232 | |
T5-30 | ① | 2 884.31 | 50 | 90 | 211.25 | 33.59 | 0.249 |
Table 2
Experimental results of acoustic wave velocity test on shale samples"
井号 | 样品号 | 小层 | 深度/m | 密度/(g/cm3) | 横波波速/(m/s) | 纵波波速/(m/s) | 动态杨氏模量/GPa | 动态泊松比 |
---|---|---|---|---|---|---|---|---|
T3 | T3-S-1 | ③ | 4 119.66 | 2.61 | 2 884.27 | 4 778.90 | 29.33 | 0.286 |
T3-S-2 | ③ | 4 120.77 | 2.58 | 2 692.43 | 4 730.85 | 27.82 | 0.240 | |
T3-S-3 | ③ | 4 120.94 | 2.69 | 2 582.43 | 5 172.92 | 33.55 | 0.166 | |
T3-S-4 | ③ | 4 121.55 | 2.71 | 2 733.53 | 5 259.15 | 35.24 | 0.185 | |
T3-S-5 | ③ | 4 122.06 | 2.56 | 2 636.15 | 4 417.48 | 24.47 | 0.277 | |
T3-S-6 | ③ | 4 122.76 | 2.56 | 2 668.44 | 4 457.61 | 24.95 | 0.279 | |
T3-S-7 | ② | 4 127.18 | 2.46 | 2 602.04 | 4 343.69 | 22.77 | 0.280 | |
T3-S-8 | ② | 4 127.52 | 2.41 | 2 518.65 | 4 351.35 | 22.11 | 0.252 | |
T3-S-9 | ① | 4 130.09 | 2.45 | 2 764.54 | 4 426.19 | 23.96 | 0.320 | |
T3-S-10 | ① | 4 132.04 | 2.45 | 2 664.92 | 4 507.86 | 24.30 | 0.269 | |
T5 | T5-S-11 | ⑤ | 2 859.97 | 2.44 | 2 444.68 | 4 397.21 | 22.55 | 0.224 |
T5-S-12 | ④ | 2 868.44 | 2.61 | 3 054.44 | 5 074.42 | 32.98 | 0.284 | |
T5-S-13 | ③ | 2 880.05 | 2.71 | 2 680.25 | 4 809.55 | 29.97 | 0.225 | |
T5-S-14 | ② | 2 881.59 | 2.69 | 2 931.65 | 4 902.47 | 31.74 | 0.278 | |
T5-S-15 | ① | 2 884.19 | 2.61 | 3 359.14 | 5 498.88 | 37.45 | 0.298 |
Table 3
Experimental results of Brazilian splitting test of shale samples"
井号 | 样品号 | 小层 | 深度/m | 最大载荷/kN | 抗拉强度/MPa |
---|---|---|---|---|---|
T2 | T2-L-1 | ③ | 3 011.01 | 3.721 | 4.41 |
T2-L-2 | ② | 3 023.96 | 5.237 | 4.98 | |
T2-L-3 | ① | 3 025.56 | 5.719 | 5.04 | |
T3 | T3-L-4 | ⑦ | 4 090.76 | 5.005 | 5.31 |
T3-L-5 | ③ | 4 120.81 | 2.752 | 3.89 | |
T3-L-6 | ② | 4 128.95 | 4.083 | 4.81 | |
T3-L-7 | ① | 4 130.25 | 3.756 | 4.28 | |
T5 | T5-L-8 | ⑤ | 2 856.05 | 3.262 | 3.58 |
T5-L-9 | ④ | 2 868.44 | 2.469 | 2.99 | |
T5-L-10 | ③ | 2 871.72 | 2.455 | 2.71 | |
T5-L-11 | ② | 2 881.59 | 4.194 | 4.80 | |
T5-L-12 | ① | 2 884.19 | 3.596 | 4.03 |
Table 4
Fracture toughness test results"
井名 | 深度/m | 小层 | 取样方向 | 与页理方向的关系 | KⅠ/(MPa·m0.5) | KⅡ/(MPa·m0.5) |
---|---|---|---|---|---|---|
T2 | 3 011.00 | ③ | 轴向(0°) | 平行 | 0.145 | |
3 016.58 | ③ | 轴向(0°) | 平行 | 0.369 | ||
T3 | 4 122.76 | ③ | 轴向(0°) | 平行 | 0.241 | 0.285 |
4 126.41 | ③ | 径向(90°) | 垂直 | 0.212 | 0.243 | |
4 127.30 | ② | 径向(90°) | 垂直 | 0.412 | 0.697 | |
4 128.20 | ② | 轴向(0°) | 平行 | 0.538 | 0.819 | |
T4 | 3 907.54 | ③ | 径向(90°) | 垂直 | 0.483 | 0.612 |
3 905.31 | ③ | 轴向(0°) | 平行 | 0.584 | 0.635 | |
3 917.57 | ① | 径向(90°) | 垂直 | 0.526 | 0.651 | |
3 917.79 | ① | 轴向(0°) | 平行 | 0.582 | 0.705 | |
T5 | 2 877.49 | ③ | 径向(90°) | 垂直 | 0.515 | 0.712 |
2 878.89 | ③ | 轴向(0°) | 平行 | 0.631 | 0.841 | |
2 880.76 | ② | 径向(90°) | 垂直 | 0.566 | 0.832 | |
2 881.59 | ② | 轴向(0°) | 平行 | 0.728 | 0.937 |
1 | WANG Z Y, CHEN L, CHEN D X, et al. Characterization and evaluation of shale lithofacies within the lowermost Longmaxi-Wufeng Formation in the Southeast Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107353. |
2 | 徐凤生, 王富平, 张锦涛, 等. 我国深层页岩气规模效益开发策略[J]. 天然气工业, 2021, 41(1): 205-213. |
XU Fengsheng, WANG Fuping, ZHANG Jintao, et al. Strategies for scale benefit development of deep shale gas in China[J], Natural Gas Industry, 2021, 41(1): 205-213. | |
3 | 唐建明, 何建华, 魏力民, 等. 川东南林滩场地区五峰组—龙马溪组页岩气藏压力演化及其地质意义[J]. 石油实验地质, 2023, 45(4): 739-750. |
TANG Jianming, HE Jianhua, WEI Limin, et al. Pressure evolution of shale gas reservoirs in Wufeng-Longmaxi formations, Lintanchang area, southeast Sichuan Basin and its geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 739-750. | |
4 | 葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组—龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area,southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647. | |
5 | LI G F, JIN Z J, LI X, et al. Experimental study on mechanical properties and fracture characteristics of shale layered samples with different mineral components under cyclic loading[J]. Marine and Petroleum Geology, 2023, 150: 106114. |
6 | ALTINDAG R. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 361-370. |
7 | 方志坚, 巴晶, 熊繁升, 等. 利用机器学习与改进岩石物理模型预测页岩油层系横波速度[J]. 石油地球物理勘探, 2024, 59(3): 381-391. |
FANG Zhijian, BA Jing, XIONG Fansheng, et al. Shear wave velocity prediction of shale oil formations based on machine learning and improved rock physics model[J]. Oil Geophysical Prospecting, 2024, 59(3): 381-391. | |
8 | 赵进雍, 冀冬生, 吴见, 等. 准噶尔盆地四棵树凹陷侏罗系—白垩系储层岩石力学参数研究[J]. 地质力学学报, 2022, 28(4): 573-582. |
ZHAO Jinyong, JI Dongsheng, WU Jian, et al. Research on rock mechanics parameters of the Jurassic-Cretaceous reservoir in the Sikeshu sag, Junggar Basin, China[J]. Journal of Geomechanics, 2022, 28(4): 573-582. | |
9 | 张庄, 宋晓波, 苏成鹏, 等. 四川盆地中二叠统茅口组一段岩石微相特征及储层成因: 以华蓥山二崖剖面为例[J]. 断块油气田, 2023, 30(3): 405-414. |
ZHANG Zhuang, SONG Xiaobo, SU Chengpeng, et al. Characteristics of rock microfacies and reservoir genesis of the first Member of Middle Permian Maokou Formation in Sichuan Basin: A case study of Erya section of Huaying Mountain[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 405-414. | |
10 | 刘震, 张军华, 于正军, 等. 非常规储层脆性研究进展及展望[J]. 石油地球物理勘探, 2023, 58(6): 1499-1507. |
LIU Zhen, ZHANG Junhua, YU Zhengjun, et al. Progress and prospects of brittleness research in unconventional reservoirs[J]. Oil Geophysical Prospecting, 2023, 58(6): 1499-1507. | |
11 | CHANG C, ZOBACK M D, KHAKSAR A. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science & Engineering, 2006, 51(4): 223-237. |
12 | HOU L, LIU X, LIANG L, et al. Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103113. |
13 | MASRI M, SIBAI M, SHAO J F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 185-191. |
14 | 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527. |
YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527. | |
15 | 王聪, 黄世军, 赵凤兰, 等. 基于波前快速法的页岩气藏重复压裂储层动用评价方法[J]. 断块油气田, 2023, 30(6): 940-946. |
WANG Cong, HUANG Shijun, ZHAO Fenglan, et al. Reservoir evaluation method for refracturing in shale gas reservoir based on fast marching method[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 940-946. | |
16 | 唐俊方, 熊健, 刘向君, 等. 玛湖凹陷风城组岩石力学参数自适应权重组合预测[J]. 石油地球物理勘探, 2024, 59(1): 1-11. |
TANG Junfang, XIONG Jian, LIU Xiangjun, et al. Adaptive weight combination forecast of rock mechanical parameters in the Fengcheng Formation of Mahu Sag[J]. Oil Geophysical Prospecting, 2024, 59(1): 1-11. | |
17 | 刘建华, 吴超, 陶兴华. 钻井岩石力学参数三维建模方法及其现场应用[J]. 钻采工艺, 2020, 43(1): 13-16. |
LIU Jianhua, WU Chao, TAO Xinghua. Three-dimensional modeling method for drilling rock mechanics and its field application[J]. Drilling & Production Technology, 2020, 43(1): 13-16. | |
18 | 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846-866. |
LI Xibing, GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846-866. | |
19 | 王亮亮, 王杰祥, 张鹏, 等. 酸化气驱交变载荷对超深层岩石强度及出砂影响[J]. 断块油气田, 2023, 30(1): 136-142. |
WANG Liangliang, WANG Jiexiang, ZHANG Peng, et al. Influence of acidification, gas flooding and alternating load on rock strength and sand production in ultra-deep wells[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 136-142. | |
20 | 卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征: 以四川盆地东南部丁山地区下古生界五峰组—龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97. |
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions: A case study of the Wufeng-Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97. | |
21 | 徐向, 辛志源, 刘超, 等. 深层常压页岩气富集机制研究: 以涪陵页岩气田白马区块为例[J]. 石油地质与工程, 2024, 38(3): 53-60. |
XU Xiang, XIN Zhiyuan, LIU Chao, et al. Enrichment law of deep atmospheric shale gas: A case study of Baima syncline in Fuling shale gas field[J]. Petroleum Geology & Engineering, 2024, 38(3): 53-60. | |
22 | HUANG H Y, HE D, LI Y, et al. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions[J]. Marine and Petroleum Geology, 2018, 92: 403-423. |
23 | XIE H P, LU J, LI C B, et al. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review[J]. International Journal of Mining Science and Technology, 2022, 32(5): 915-950. |
24 | 尹帅, 单钰铭, 王哲, 等. Hoek-Brown准则在岩石抗压强度测井解释中的应用[J]. 桂林理工大学学报, 2014, 34(4): 659-665. |
YIN Shuai, SHAN Yuming, WANG Zhe, et al. Application of Hoek-Brown criterion in rock compressive strength logging interpretation[J]. Journal of Guilin University of Technology, 2014, 34(4): 659-665. | |
25 | 张昊天. 海相高成熟页岩储层岩石力学特征及脆性评价技术[D]. 成都: 成都理工大学, 2019. |
ZHANG Haotian. The evaluation technology of rock mechanics and brittleness characteristics for marine high mature shale reservoir[D]. Chengdu: Chengdu University of Technology, 2019. |
[1] | LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. |
|