Reservoir Evaluation and Development ›› 2019, Vol. 9 ›› Issue (5): 1-13.
FANG Zhixiong
Received:
2019-08-07
Online:
2019-10-26
Published:
2019-10-26
CLC Number:
FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J].Reservoir Evaluation and Development, 2019, 9(5): 1-13.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of geological characteristics between normal pressure shale gas and over-pressured shale gas"
项 别 | 常压页岩气 | 高压页岩气 |
---|---|---|
沉积特征 | 处于深水陆棚相上斜坡,优质页岩厚24~35 m,石英含量 >50 %,黏土矿物含量<30 % | 处于深水陆棚相下斜坡,优质页岩厚度38~45 m,石英含量40 %~50 %,黏土矿物含量30 %~40 % |
储集特征 | 基质孔隙度3.5 %~5.0 %,高角度缝及层理缝更发育 | 基质孔隙度4.0 %~6.0 %,高角度缝相对不发育 |
赋存状态 | 吸附气占比高(40 %~60 %) | 吸附气占比低(25 %~40 %) |
应力特征 | 地应力相对较小,40~60 MPa,最大水平主应力和最小 水平主应力差异大,差异系数0.27~0.34 | 地应力较大,50~80 MPa,最大水平主应力和最小水平主应力差异小,差异系数0.11~0.13 |
温压特征 | 地温梯度低,(2.1~2.5) ℃/100 m,地层压力系数<1.3 | 地温梯度高,(2.6~3.0) ℃/100 m,地层压力系数>1.3 |
生产特征 | 返排率高,日产液高,产量递减相对较慢 | 返排率低,日产液低,产量递减相对较快 |
Table 2
Shale pore types and characteristics"
孔隙类型 | 亚类 | 特征描述 | 成因 | |
---|---|---|---|---|
无机孔 | 粒间孔 | 颗粒间孔隙或矿物间的接触部分,一般为数百纳米及其以下 | 压实残余、溶蚀或收缩 | |
粒内孔 | 数纳米到数百纳米不等,包括颗粒内微孔及黏土矿物解理缝 | 溶蚀 | ||
晶间孔 | 矿物晶体间的孔隙,主要位于黏土矿物及黄铁矿物部分 | 结晶 | ||
有机孔 | 干酪 根孔 | 无定形干酪根孔 | 数纳米到数百纳米不等,圆度较高且密集分布的孔隙 | 降解、热演化作用 |
结构型干酪根孔 | 数纳米到数百纳米不等,孔隙保有母质原始结构 | 热演化作用、凝胶作用 | ||
沥青孔 | 固体沥青孔 | 数纳米到数百纳米不等,原生沥青保有母质原始结构,孔隙多为圆或次圆 | 降解、液态烃演化 | |
沥青球粒孔 | 数十纳米到数百纳米不等,孔隙为不规则棱角状 | 热演化作用、物理堆积 | ||
微裂缝 | 应力缝 | 宽度一般小于2 μm,长度几微米到数厘米不等,矿物颗粒或有机质颗粒不规则破裂 | 应力(构造及成岩) | |
收缩缝 | 宽度一般小于1 μm,长度不超过100 μm,多见于有机质与矿物颗粒接触面 | 脱水或收缩 |
Table 3
Classification and evaluation criteria for shale gas reservoirs"
储层 分级 | 微孔(<5 nm) | 小孔(5~25 nm) | 常压页岩储层 | 高压页岩储层 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
孔容/(mL·g-1) | 孔隙度/% | 孔容/(mL·g-1) | 孔隙度/% | TOC/% | 实验测总含气量/(mL·g-1) | TOC/% | 实验测总含气量/(mL·g-1) | ||||
好储层 | >0.006 | >1.5 | >0.005 | >1.25 | >4.5 | >2.2 | >3.5 | >4.5 | |||
中储层 | >0.006 | >1.5 | >0.002 | >0.5 | 2.5~4.5 | >1.8 | 2.0~3.5 | >3.7 | |||
差储层 | 0.002~0.006 | 0.5~1.5 | 1.0~2.5 | <1.5 | 1.0~2.0 | <2.3 | |||||
非储层 | <0.002 | <0.5 | <1.0 | <1.0 |
Table 4
Standards for evaluation of normal pressure shale gas targets"
评价参数 | 一类区 | 二类区 | 三类区 | ||
---|---|---|---|---|---|
物质基础 | 关键 参数 | 优质页岩厚度/m | >30 | 20~30 | 15~20 |
有机质丰度/% | >3 | 2~3 | 1~2 | ||
优质页岩分布面积/km2 | >100 | 50~100 | <50 | ||
资源丰度/(108m3·km-2) | >8 | 4~8 | <4 | ||
辅助 参数 | 热演化程度/% | 2.0~3.0 | 3.0~3.5 | >3.5 | |
富集程度 | 关键 参数 | 地层压力系数 | >1.1 | 0.9~1.1 | <0.9 |
孔隙度/% | >4 | 2~4 | <2 | ||
含气量/(m3·t-1) | >4 | 2~4 | <2 | ||
辅助 参数 | 距剥蚀边界距离/km | >4 | 2~4 | <2 | |
断裂发育程度 | 断裂较少,规模小 | 断裂较发育,规模小 | 断裂发育,规模大 | ||
距开启断层距离/km | >1.5 | 0.5~1.5 | <0.5 | ||
孔径/nm | >10为主 | 2~10为主 | <2为主 | ||
比表面积/(m2·g-1) | >20 | 15~20 | <15 | ||
地 应 力 场 | 关键 参数 | 构造样式 | 背斜、斜坡、褶皱宽缓的向斜 | 较宽缓向斜 | 较紧闭—紧闭复杂褶皱 |
埋深/m | 1 500~3 800 | 1 000~1 500或3 800~4 500 | >4 500 | ||
层理缝 | 发育 | 较发育 | 不发育 | ||
微裂缝 | 发育 | 较发育 | 不发育 | ||
地应力/MPa | <80 | 80~95 | >95 | ||
应力差异系数 | <0.2 | 0.2~0.3 | >0.3 | ||
硅质含量/% | >50 | 30~50 | <30 | ||
曲率 | 中等 | 大 | 小 | ||
辅助 参数 | 泊松比 | <0.25 | 0.25~0.30 | >0.30 | |
黏土含量/% | <30 | 30~40 | >40 | ||
脆性指数/% | >50 | 30~50 | <30 | ||
顶底板 | 具应力隔挡 | 应力隔挡不明显 | 不具应力隔挡 |
[1] |
邹才能, 董大忠, 王社教 , 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
[2] | 马永生, 冯建辉, 牟泽辉 , 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012,14(6):22-29. |
[3] | 张大伟, 李玉喜, 张金川 , 等. 全国页岩气资源潜力调查评价[M]. 北京: 地质出版社, 2012. |
[4] |
王志刚 . 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
[5] | 郭旭升, 胡东风, 魏志红 , 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016,21(3):24-37. |
[6] | 孙健, 罗兵 . 四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J]. 石油与天然气地质, 2016,37(6):809-818. |
[7] | 翟刚毅, 包书景, 王玉芳 , 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017,38(4):441-447. |
[8] | 马永生, 蔡勋育, 赵培荣 . 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
[9] | 方志雄, 何希鹏 . 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016,37(6):819-827. |
[10] | 卞晓冰, 蒋廷学, 卫然 , 等. 常压页岩气水平井压后排采控制参数优化[J]. 大庆石油地质与开发, 2016,35(5):170-174. |
[11] | 何希鹏, 张培先, 房大志 , 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018,25(5):72-79. |
[12] | 何希鹏, 何贵松, 高玉巧 , 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018,38(12):1-14. |
[13] | 高玉巧, 蔡潇, 张培先 , 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018,38(12):15-25. |
[14] | 潘仁芳, 李笑天, 金吉能 , 等. 渝东南盆缘转换带常压页岩气储层非均质性特征及主控因素[J]. 天然气工业, 2018,38(12):26-36. |
[15] | 马力, 陈焕疆, 甘克文 , 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 59-82. |
[16] |
袁玉松, 周雁, 邱登峰 , 等. 埋藏过程中泥页岩非构造裂缝的形成演化模式[J]. 石油与天然气地质, 2015,36(5):822-827.
doi: 10.11743/ogg20150514 |
[17] | 郭彤楼, 张汉荣 . 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36. |
[18] | 金之钧, 胡宗全, 高波 , 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10. |
[19] | 何治亮, 聂海宽, 张钰莹 . 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016,23(2):8-17. |
[20] | 郭旭升, 胡东风, 李宇平 , 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017,44(4):481-491. |
[21] | 何希鹏, 高玉巧, 唐显春 , 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017,28(4):654-664. |
[22] | 余川, 聂海宽, 曾春林 , 等. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响[J]. 地质学报, 2014,88(7):1311-1320. |
[23] | ZHANG L C, LU S F, XIAO D S , et al. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites[J]. Journal of Natural Gas Science and Engineering, 2017,38:434-449. |
[24] | 龙胜祥, 彭勇民, 刘华 , 等. 四川盆地东南部下志留统龙马溪组一段页岩微—纳米观地质特征[J]. 天然气工业, 2017,37(9):23-30. |
[1] | GUO Tonglou. A few geological issues in shale gas exploration and development [J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. |
[2] | HE Xipeng,QI Yanping,HE Guisong,GAO Yuqiao,LIU Ming,ZHANG Peixian,WANG Kaiming. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing [J]. Reservoir Evaluation and Development, 2019, 9(5): 32-39. |
[3] | JIANG Tingxue,SU Yuan,BIAN Xiaobing,MEI Zongqing. Network fracturing technology with low cost and high density for normal pressure shale gas [J]. Reservoir Evaluation and Development, 2019, 9(5): 78-83. |
|