Reservoir Evaluation and Development ›› 2019, Vol. 9 ›› Issue (5): 1-13.
Previous Articles Next Articles
FANG Zhixiong
Received:
2019-08-07
Online:
2019-10-26
Published:
2019-10-26
CLC Number:
Zhixiong FANG. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1-13.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of geological characteristics between normal pressure shale gas and over-pressured shale gas"
项 别 | 常压页岩气 | 高压页岩气 |
---|---|---|
沉积特征 | 处于深水陆棚相上斜坡,优质页岩厚24~35 m,石英含量 >50 %,黏土矿物含量<30 % | 处于深水陆棚相下斜坡,优质页岩厚度38~45 m,石英含量40 %~50 %,黏土矿物含量30 %~40 % |
储集特征 | 基质孔隙度3.5 %~5.0 %,高角度缝及层理缝更发育 | 基质孔隙度4.0 %~6.0 %,高角度缝相对不发育 |
赋存状态 | 吸附气占比高(40 %~60 %) | 吸附气占比低(25 %~40 %) |
应力特征 | 地应力相对较小,40~60 MPa,最大水平主应力和最小 水平主应力差异大,差异系数0.27~0.34 | 地应力较大,50~80 MPa,最大水平主应力和最小水平主应力差异小,差异系数0.11~0.13 |
温压特征 | 地温梯度低,(2.1~2.5) ℃/100 m,地层压力系数<1.3 | 地温梯度高,(2.6~3.0) ℃/100 m,地层压力系数>1.3 |
生产特征 | 返排率高,日产液高,产量递减相对较慢 | 返排率低,日产液低,产量递减相对较快 |
Table 2
Shale pore types and characteristics"
孔隙类型 | 亚类 | 特征描述 | 成因 | |
---|---|---|---|---|
无机孔 | 粒间孔 | 颗粒间孔隙或矿物间的接触部分,一般为数百纳米及其以下 | 压实残余、溶蚀或收缩 | |
粒内孔 | 数纳米到数百纳米不等,包括颗粒内微孔及黏土矿物解理缝 | 溶蚀 | ||
晶间孔 | 矿物晶体间的孔隙,主要位于黏土矿物及黄铁矿物部分 | 结晶 | ||
有机孔 | 干酪 根孔 | 无定形干酪根孔 | 数纳米到数百纳米不等,圆度较高且密集分布的孔隙 | 降解、热演化作用 |
结构型干酪根孔 | 数纳米到数百纳米不等,孔隙保有母质原始结构 | 热演化作用、凝胶作用 | ||
沥青孔 | 固体沥青孔 | 数纳米到数百纳米不等,原生沥青保有母质原始结构,孔隙多为圆或次圆 | 降解、液态烃演化 | |
沥青球粒孔 | 数十纳米到数百纳米不等,孔隙为不规则棱角状 | 热演化作用、物理堆积 | ||
微裂缝 | 应力缝 | 宽度一般小于2 μm,长度几微米到数厘米不等,矿物颗粒或有机质颗粒不规则破裂 | 应力(构造及成岩) | |
收缩缝 | 宽度一般小于1 μm,长度不超过100 μm,多见于有机质与矿物颗粒接触面 | 脱水或收缩 |
Table 3
Classification and evaluation criteria for shale gas reservoirs"
储层 分级 | 微孔(<5 nm) | 小孔(5~25 nm) | 常压页岩储层 | 高压页岩储层 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
孔容/(mL·g-1) | 孔隙度/% | 孔容/(mL·g-1) | 孔隙度/% | TOC/% | 实验测总含气量/(mL·g-1) | TOC/% | 实验测总含气量/(mL·g-1) | ||||
好储层 | >0.006 | >1.5 | >0.005 | >1.25 | >4.5 | >2.2 | >3.5 | >4.5 | |||
中储层 | >0.006 | >1.5 | >0.002 | >0.5 | 2.5~4.5 | >1.8 | 2.0~3.5 | >3.7 | |||
差储层 | 0.002~0.006 | 0.5~1.5 | 1.0~2.5 | <1.5 | 1.0~2.0 | <2.3 | |||||
非储层 | <0.002 | <0.5 | <1.0 | <1.0 |
Table 4
Standards for evaluation of normal pressure shale gas targets"
评价参数 | 一类区 | 二类区 | 三类区 | ||
---|---|---|---|---|---|
物质基础 | 关键 参数 | 优质页岩厚度/m | >30 | 20~30 | 15~20 |
有机质丰度/% | >3 | 2~3 | 1~2 | ||
优质页岩分布面积/km2 | >100 | 50~100 | <50 | ||
资源丰度/(108m3·km-2) | >8 | 4~8 | <4 | ||
辅助 参数 | 热演化程度/% | 2.0~3.0 | 3.0~3.5 | >3.5 | |
富集程度 | 关键 参数 | 地层压力系数 | >1.1 | 0.9~1.1 | <0.9 |
孔隙度/% | >4 | 2~4 | <2 | ||
含气量/(m3·t-1) | >4 | 2~4 | <2 | ||
辅助 参数 | 距剥蚀边界距离/km | >4 | 2~4 | <2 | |
断裂发育程度 | 断裂较少,规模小 | 断裂较发育,规模小 | 断裂发育,规模大 | ||
距开启断层距离/km | >1.5 | 0.5~1.5 | <0.5 | ||
孔径/nm | >10为主 | 2~10为主 | <2为主 | ||
比表面积/(m2·g-1) | >20 | 15~20 | <15 | ||
地 应 力 场 | 关键 参数 | 构造样式 | 背斜、斜坡、褶皱宽缓的向斜 | 较宽缓向斜 | 较紧闭—紧闭复杂褶皱 |
埋深/m | 1 500~3 800 | 1 000~1 500或3 800~4 500 | >4 500 | ||
层理缝 | 发育 | 较发育 | 不发育 | ||
微裂缝 | 发育 | 较发育 | 不发育 | ||
地应力/MPa | <80 | 80~95 | >95 | ||
应力差异系数 | <0.2 | 0.2~0.3 | >0.3 | ||
硅质含量/% | >50 | 30~50 | <30 | ||
曲率 | 中等 | 大 | 小 | ||
辅助 参数 | 泊松比 | <0.25 | 0.25~0.30 | >0.30 | |
黏土含量/% | <30 | 30~40 | >40 | ||
脆性指数/% | >50 | 30~50 | <30 | ||
顶底板 | 具应力隔挡 | 应力隔挡不明显 | 不具应力隔挡 |
[1] |
邹才能, 董大忠, 王社教 , 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
[2] | 马永生, 冯建辉, 牟泽辉 , 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012,14(6):22-29. |
[3] | 张大伟, 李玉喜, 张金川 , 等. 全国页岩气资源潜力调查评价[M]. 北京: 地质出版社, 2012. |
[4] |
王志刚 . 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
[5] | 郭旭升, 胡东风, 魏志红 , 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016,21(3):24-37. |
[6] | 孙健, 罗兵 . 四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J]. 石油与天然气地质, 2016,37(6):809-818. |
[7] | 翟刚毅, 包书景, 王玉芳 , 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017,38(4):441-447. |
[8] | 马永生, 蔡勋育, 赵培荣 . 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
[9] | 方志雄, 何希鹏 . 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016,37(6):819-827. |
[10] | 卞晓冰, 蒋廷学, 卫然 , 等. 常压页岩气水平井压后排采控制参数优化[J]. 大庆石油地质与开发, 2016,35(5):170-174. |
[11] | 何希鹏, 张培先, 房大志 , 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018,25(5):72-79. |
[12] | 何希鹏, 何贵松, 高玉巧 , 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018,38(12):1-14. |
[13] | 高玉巧, 蔡潇, 张培先 , 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018,38(12):15-25. |
[14] | 潘仁芳, 李笑天, 金吉能 , 等. 渝东南盆缘转换带常压页岩气储层非均质性特征及主控因素[J]. 天然气工业, 2018,38(12):26-36. |
[15] | 马力, 陈焕疆, 甘克文 , 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 59-82. |
[16] |
袁玉松, 周雁, 邱登峰 , 等. 埋藏过程中泥页岩非构造裂缝的形成演化模式[J]. 石油与天然气地质, 2015,36(5):822-827.
doi: 10.11743/ogg20150514 |
[17] | 郭彤楼, 张汉荣 . 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36. |
[18] | 金之钧, 胡宗全, 高波 , 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10. |
[19] | 何治亮, 聂海宽, 张钰莹 . 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016,23(2):8-17. |
[20] | 郭旭升, 胡东风, 李宇平 , 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017,44(4):481-491. |
[21] | 何希鹏, 高玉巧, 唐显春 , 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017,28(4):654-664. |
[22] | 余川, 聂海宽, 曾春林 , 等. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响[J]. 地质学报, 2014,88(7):1311-1320. |
[23] | ZHANG L C, LU S F, XIAO D S , et al. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites[J]. Journal of Natural Gas Science and Engineering, 2017,38:434-449. |
[24] | 龙胜祥, 彭勇民, 刘华 , 等. 四川盆地东南部下志留统龙马溪组一段页岩微—纳米观地质特征[J]. 天然气工业, 2017,37(9):23-30. |
[1] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[2] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[3] | SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,LIU Shiqi,WANG Yuejiang. Deep coalbed methane resource and its exploration and development prospect in East China [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415. |
[4] | LIU Ming,MENG Qingli,DU Yuan,LI Yanjing. Application of seismic exploration technology in shale gas exploration and development in Nanchuan area [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 407-416. |
[5] | JIANG Shu,LI Chun,CHEN Guohui,GUO Tonglou,WU Yuyuan,HE Xipeng,GAO Yuqiao,ZHANG Peixian. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: A case study of southeast Sichuan Basin and Appalachia Basin [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 399-406. |
[6] | YANG Yaozhong,TAN Shaoquan,SUN Yeheng,MU Xing,MA Chengjie,LIU Jiantao. Construction and application of digital platform for comprehensive research of oil and gas exploration and development [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 628-634. |
[7] | HU Chunfeng,MEI Junwei,LI Shizhao,LU Bi,MA Jun,QIAN Jin. Analysis on geological and engineering factors of development effects on normal pressure shale gas in Nanchuan Block, eastern Suchuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 559-568. |
[8] | WANG Yunhai,REN Jianhua,CHEN Zuhua,MEI Junwei,HU Chunfeng,WANG Wei,LU Bi. Integrated benefit development and intelligent evaluation of normal pressure shale gas [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 487-496. |
[9] | HE Xipeng,GAO Yuqiao,HE Guisong,ZHANG Peixian,LIU Ming,SUN Bin,WANG Kaiming,ZHOU Di'na,REN Jianhua. Geological characteristics and key technologies for exploration and development of Nanchuan Shale Gas Field in southeast Chongqing [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 305-316. |
[10] | LI Donghai,ZAN Ling,HUANG Wenhuan,YU Wenduan,MA Xiaodong,ZHENG Yongwang,ZHOU Tao,YIN Yanling. Exploration and development integration practice of subtle reservoir of 3rd member of Funing Formation in western slope of Qintong depression [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 281-290. |
[11] | ZHOU Guangzhe. Practice of progressive exploration-development integration in SD Oil Field [J]. Reservoir Evaluation and Development, 2021, 11(2): 261-268. |
[12] | CEN Tao,XIA Haibang,LEI Lin. Research and application of key technologies for fracturing of normal pressure shale in Southeastern Chongqing [J]. Reservoir Evaluation and Development, 2020, 10(5): 70-76. |
[13] | REN Bozhang. Application of spark source in exploration of mountains in southern China [J]. Reservoir Evaluation and Development, 2020, 10(5): 28-33. |
[14] | WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan [J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11. |
[15] | JIANG Tingxue,SU Yuan,BIAN Xiaobing,MEI Zongqing. Network fracturing technology with low cost and high density for normal pressure shale gas [J]. Reservoir Evaluation and Development, 2019, 9(5): 78-83. |
|