Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (4): 572-579.doi: 10.13809/j.cnki.cn32-1825/te.2022.04.004
• Methodological and Theory • Previous Articles Next Articles
SHI Liyan1(),LI Weibo1,KANG Qinqin2,LI Fei1,QI Jiaxin3
Received:
2022-04-12
Online:
2022-09-02
Published:
2022-08-26
CLC Number:
Liyan SHI,Weibo LI,Qinqin KANG, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579.
[1] | 郭晓洁, 雷东记, 张玉贵. 构造煤复电性实验及其特征研究[J]. 煤田地质与勘探, 2015, 43(4):102-105. |
GUO Xiaojie, LEI Dongji, ZHANG Yugui. Electrical experiment and its characteristics of tectonic coal[J]. Coal Geology & Exploration, 2015, 43(4): 102-105. | |
[2] | 刘之的, 王伟, 杨珺茹, 等. 煤及煤层气储层导电特性研究综述与展望[J]. 地球物理学进展, 2020, 35(4):1415-1423. |
LIU Zhidi, WANG Wei, YANG Junru, et al. Review and prospect of study on conductive properties of coal and CBM reservoirs[J]. Progress in Geophysics, 2020, 35(4): 1415-1423. | |
[3] | 门相勇, 王陆新, 王越, 等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探, 2021, 26(3):1-8. |
MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1-8. | |
[4] | 孙德强, 高文凯, 郑军卫, 等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源, 2021, 43(1):33-38. |
SUN Deqiang, GAO Wenkai, ZHENG Junwei, et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China, 2021, 43(1): 33-38. | |
[5] | 陈健杰, 江林华, 张玉贵, 等. 不同煤体结构类型煤的导电性质研究[J]. 煤炭科学技术, 2011, 39(7):90-92. |
CHEN Jianjie, JIANG Linhua, ZHANG Yugui, et al. Study on coal conductive properties of different coal structure[J]. Coal Science and Technology, 2011, 39(7): 90-92. | |
[6] | 李祥春, 陆卫东, 孟洋洋, 等. 微观孔隙结构和煤的成分对煤样电阻率的影响[J]. 采矿与安全工程学报, 2018, 35(1):221-228. |
LI Xiangchun, LU Weidong, MENG Yangyang, et al. Effects of microscopic pore structure and coal composition on coal resistivity[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 221-228. | |
[7] | 李芳, 牛会永, 李石林, 等. 煤介电常数影响因素研究现状及分析[J]. 煤矿安全, 2017, 48(12):218-220. |
LI Fang, NIU Huiyong, LI Shilin, et al. Research status and analysis of influencing factors of coal dielectric constant[J]. Safety in Coal Mines, 2017, 48(12): 218-220. | |
[8] | 郑学召, 赵炬, 张铎, 等. 不同变质程度煤介电常数特性[J]. 西安科技大学学报, 2019, 39(3):469-474. |
ZHENG Xuezhao, ZHAO Ju, ZHANG Duo, et al. Dielectric constant characteristics of different metamorphic coals[J]. Journal of Xi’an University of Science and Technology, 2019, 39(3): 469-474. | |
[9] | 柴斌, 许小凯, 张川, 等. 六种不同变质程度煤的电阻率研究[J]. 地球物理学进展, 2021, 36(3):1046-1051. |
CHAI Bin, XU Xiaokai, ZHANG Chuan, et al. Characteristics of resistivity and its anisotropy of six kinds of metamorphic coals[J]. Progress in Geophysics, 2021, 36(3): 1046-1051. | |
[10] |
任华育, 曹志勇, 童继强, 等. 原生煤和碎裂煤电阻率对比分析[J]. 煤炭技术, 2018, 37(9):139-142.
doi: 10.1016/0257-8972(89)90099-6 |
REN Huayu, CAO Zhiyong, TONG Jiqiang, et al. Resistivity analysis of primary structural coal and cataclastic coal[J]. Coal Technology, 2018, 37(9): 139-142.
doi: 10.1016/0257-8972(89)90099-6 |
|
[11] | 康建宁, 黄学满. 煤的电性参数与瓦斯突出危险性之间关系研究[J]. 煤炭科学技术, 2005, 33(1):56-59. |
KANG Jianning, HUANG Xueman. Study on relationship between coal electric parameter and gas outburst danger[J]. Coal Science and Technology, 2005, 33(1): 56-59. | |
[12] | 徐宏武. 煤层电性参数测试及其与煤岩特性关系的研究[J]. 煤炭科学技术, 2005, 33(3):41-46. |
XU Hongwu. Measurement and test of seam electric parameter and study on relationship between seam electric parameter and coal petrology characteristics[J]. Coal Science and Technology, 2005, 33(3): 41-46. | |
[13] | 王云刚, 魏建平, 刘明举. 构造软煤电性参数影响因素的分析[J]. 煤炭科学技术, 2010, 38(8):77-80. |
WANG Yungang, WEI Jianping, LIU Mingju. Analysis on factors affected to electromagetic parameters of tectonic soft seam[J]. Coal Science and Technology, 2010, 38(8): 77-80. | |
[14] | 刘保县, 徐龙君, 鲜学福, 等. 煤岩多孔介质及其充瓦斯后的电特性研究[J]. 岩石力学与工程学报, 2004, 23(11):1861-1866. |
LIU Baoxian, XU Longjun, XIAN Xuefu, et al. Study on electrical properties of rock-coal porous media with gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1861-1866. | |
[15] | 陈鹏, 王恩元, 朱亚飞. 受载煤体电阻率变化规律的实验研究[J]. 煤炭学报, 2013, 38(4):548-553. |
CHEN Peng, WANG Enyuan, ZHU Yafei. Experimental study on resistivity variation regularities of loading coal[J]. Journal of China Coal Society, 2013, 38(4): 548-553. | |
[16] | 高丽蓉, 杨甫, 马东民, 等. 基于低温氮吸附的彬长矿区4号煤孔隙分形特征研究[J]. 非常规油气, 2020, 7(5):41-49. |
GAO Lirong, YANG Fu, MA Dongmin, et al. Research on pore fractal characteristics of No. 4 coal in Binchang mining area based on low-temperature nitrogen adsorption[J]. Unconventional Oil and Gas, 2020, 7(5): 41-49. | |
[17] | 井康康, 董旭, 蔺广泉, 等. 低渗储层孔隙结构的分形特征研究——以鄂尔多斯盆地永宁油田顺宁—洛河北区长6储层为例[J]. 非常规油气, 2021, 8(4):19-25. |
JING Kangkang, DONG Xu, LIN Guangquan, et al. Research on fractal characteristics of pore structure in low permeability reservoirs: Taking Chang 6 reservoir in Shunning-Luohebei area of Yongning Oilfield, Ordos Basin as an example[J]. Unconventional Oil and Gas, 2021, 8(4): 19-25. | |
[18] | 陈立, 张英华, 侯玮, 等. 不同温度下可溶有机质对煤电阻率的影响[J]. 哈尔滨工业大学学报, 2019, 51(4):153-162. |
CHEN Li, ZHANG Yinghua, HOU Wei, et al. The effect of soluble organic matter on coal resistivity at different temperatures[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 153-162. | |
[19] | 李祥春, 张琪, 安振兴, 等. 不同煤体电性参数影响因素实验研究[J]. 中国矿业大学学报, 2021, 50(3):570-578. |
LI Xiangchun, ZHANG Qi, AN Zhenxing, et al. Experimental study of influencing factors of electrical parameters of different kinds of coal mass[J]. Journal of China University of Mining & Technology, 2021, 50(3): 570-578. | |
[20] | 李祥春, 张良, 聂百胜, 等. 不同应力和瓦斯压力下煤的相对介电常数变化规律[J]. 矿业科学学报, 2018, 3(4):349-355. |
LI Xiangchun, ZHANG Liang, NIE Baisheng, et al. Law of relative dielectric constant of coal under different stresses and gas pressures[J]. Journal of Mining Science and Technology, 2018, 3(4): 349-355. | |
[21] | 陈鹏, 陈学习, 刘永杰, 等. 瓦斯压力对煤体电阻率影响规律与机制[J]. 煤炭科学技术, 2018, 46(7):109-114. |
CHEN Peng, CHEN Xuexi, LIU Yongjie, et al. Gas pressure affected to coal resistivity law and mechanism[J]. Coal Science and Technology, 2018, 46(7): 109-114. | |
[22] | 康天慧, 董东, 魏建平, 等. 煤电阻率与其瓦斯含量关系的实验研究[J]. 地质与勘探, 2016, 52(5):918-923. |
KANG Tianhui, DONG Dong, WEI Jianping, et al. An experimental study on the relation-ship between resistivity and gas content of coal[J]. Geology and Exploration, 2016, 52(5): 918-923. | |
[23] | 汤小燕, 陈学健, 张晨阳. 低变质原生结构煤电阻率变化规律实验研究[J]. 科学技术与工程, 2019, 19(26):294-299. |
TANG Xiaoyan, CHEN Xuejian, ZHANG Chenyang. Experimental study on the change law of resistivity in the primary structure coal with low rank[J]. Science Technology and Engineering, 2019, 19(26): 294-299. | |
[24] | 薛王龙, 冯增朝, 董东, 等. 不同含水率煤体电阻率随吸附/解吸变化实验研究[J]. 煤炭技术, 2016, 35(10):225-226. |
XUE Wanglong, FENG Zengchao, DONG Dong, et al. Experimental study on resistivity of different water cut coal volume with change of adsorption/desorption[J]. Coal Technology, 2016, 35(10): 225-226. | |
[25] | 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24. |
MA Dongmin, GAO Zheng, CHEN Yue, et al. Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Reservoir Evaluation and Development, 2020, 10(4): 17-24. | |
[26] | 李松林, 冯霞. 物理化学(下册)[M].第六版. 北京: 高等教育出版社, 2017:25-40. |
LI Songlin, FENG Xia. Physical chemistry(sixth edition) Volume Ⅱ[M]. 6+h ed. Beijing: Higher Education Press, 2017: 25-40. | |
[27] | 白少先, 黄平. 双电层电黏度对润滑性能的影响研究[J]. 摩擦学学报, 2004, 24(2):168-171. |
BAI Shaoxian, HUANG Ping. Effect of electro-viscosity of electric double layer on lubricating performance[J]. Tribology, 2004, 24(2): 168-171. | |
[28] | CHEN Y, MA Z Y, MA D M, et al. Characteristics of the coal fines produced from low-rank coal reservoirs and their wettability and settleability in the Binchang Area, South Ordos Basin, China[J]. Geofluids, 2021, 2021: 1-15. |
[29] | ZHANG C, MA D M, CHEN Y, et al. Pore structure of different macroscopically distinguished components within low-rank coals and its methane desorption characteristics[J]. Fuel, 2021, 293: 1-10. |
|