Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (2): 190-199.doi: 10.13809/j.cnki.cn32-1825/te.2023.02.007
• Methodology and Theory • Previous Articles Next Articles
QU Lili(),LI Minglin(),WU Zhimin,ZHANG Lin,FENG Linping,DENG Liping
Received:
2022-10-31
Online:
2023-04-26
Published:
2023-04-26
CLC Number:
Lili QU,Minglin LI,Zhimin WU, et al. Application of unascertained measure model in reservoir potential evaluation of Nanpu H Fault Block[J]. Reservoir Evaluation and Development, 2023, 13(2): 190-199.
Table 1
Impact of sedimentary facies belt on water injection development"
注采相带 | 统计井数 (口) | 见效井数 (口) | 见效比例 (%) | 平均井距 (m) | 见效时间 (d) | 见水时间 (d) | 压力传导速度 (m/d) |
---|---|---|---|---|---|---|---|
河道注水河道见效(顺物源) | 10 | 8 | 80.0 | 266 | 162 | 566 | 1.64 |
河道注水河道见效(垂直物源) | 10 | 6 | 60.0 | 247 | 201 | 697 | 1.23 |
河道注水河道见效(与物源方向相反) | 10 | 7 | 70.0 | 268 | 180 | 568 | 1.49 |
河道注水侧缘见效 | 8 | 2 | 25.0 | 257 | 287 | 837 | 0.90 |
侧缘注水河道见效 | 8 | 4 | 50.0 | 243 | 307 | 987 | 0.79 |
侧缘注水侧缘见效 | 6 | 2 | 33.3 | 244 | 388 | 未见水 | 0.63 |
Table 2
Single factor evaluation criteria for oil layers in Block H of Nanpu Oilfield"
影响因素 | 评价等级 | |||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||
地质因素 | 构造特征 | 微构造类型 | 正向微构造 | 斜面高部位 | 斜面低部位 | 负向微构造 |
沉积特征 | 沉积微相 | 河口坝 | 水下分流河道 | 河道侧缘 | 席状砂 | |
物性特征 | 渗透率(10-3 μm2) | >200 | 100~200 | 100~50 | <50 | |
物质基础 | 油层有效油厚(m) | >8 | 6~8 | 4~6 | <4 | |
开发因素 | 开采情况 | 综合含水(%) | <20 | 20~60 | 60~80 | >80 |
采出程度(%) | <10 | 10~15 | 15~20 | >20 | ||
能量补给 | 压力系数 | >0.8 | 0.6~0.8 | 0.4~0.6 | <0.4 |
Table 6
Comprehensive evaluation results of sublayer Ed1Ⅱ②2 of Block H in Nanpu Oilfield"
井号 | C1 | C2 | C3 | C4 | 储层等级 | 分数 | 排序 |
---|---|---|---|---|---|---|---|
W29 | 0.736 | 0.263 | 0 | 0 | Ⅰ | 0.93 | 1 |
W27 | 0.590 | 0.363 | 0.046 | 0 | Ⅰ | 0.89 | 2 |
W26 | 0.588 | 0.312 | 0.060 | 0.040 | Ⅰ | 0.86 | 3 |
W25 | 0.580 | 0.332 | 0 | 0.107 | Ⅰ | 0.86 | 4 |
W22 | 0.401 | 0.400 | 0.198 | 0 | Ⅱ | 0.80 | 5 |
W21 | 0.338 | 0.554 | 0.043 | 0.064 | Ⅱ | 0.79 | 6 |
W28 | 0.336 | 0.554 | 0.043 | 0.066 | Ⅱ | 0.79 | 7 |
W20 | 0.358 | 0.463 | 0.050 | 0.128 | Ⅱ | 0.76 | 8 |
W14 | 0.481 | 0.194 | 0.174 | 0.150 | Ⅱ | 0.75 | 9 |
W7 | 0.473 | 0.194 | 0.185 | 0.147 | Ⅱ | 0.75 | 10 |
W1 | 0.461 | 0.194 | 0.194 | 0.150 | Ⅱ | 0.74 | 11 |
W17 | 0.187 | 0.574 | 0.239 | 0 | Ⅱ | 0.74 | 12 |
W10 | 0.419 | 0.243 | 0.185 | 0.153 | Ⅱ | 0.73 | 13 |
W16 | 0.386 | 0.148 | 0.412 | 0.054 | Ⅲ | 0.72 | 14 |
W13 | 0.545 | 0.043 | 0 | 0.412 | Ⅱ | 0.68 | 15 |
W12 | 0.303 | 0.168 | 0.432 | 0.097 | Ⅲ | 0.67 | 16 |
W15 | 0.232 | 0.229 | 0.495 | 0.043 | Ⅱ | 0.66 | 17 |
W32 | 0.358 | 0.051 | 0.457 | 0.135 | Ⅲ | 0.66 | 18 |
W11 | 0.359 | 0.051 | 0.447 | 0.143 | Ⅲ | 0.66 | 19 |
W23 | 0.319 | 0.143 | 0.385 | 0.153 | Ⅲ | 0.66 | 20 |
W2 | 0.243 | 0.193 | 0.392 | 0.272 | Ⅲ | 0.65 | 21 |
W30 | 0.439 | 0.067 | 0.104 | 0.389 | Ⅲ | 0.64 | 22 |
W19 | 0.429 | 0.067 | 0.104 | 0.400 | Ⅲ | 0.63 | 23 |
W24 | 0.213 | 0.193 | 0.442 | 0.152 | Ⅲ | 0.62 | 24 |
W9 | 0.284 | 0.218 | 0.167 | 0.330 | Ⅲ | 0.61 | 25 |
W8 | 0.401 | 0.009 | 0.223 | 0.366 | Ⅲ | 0.61 | 26 |
W5 | 0.226 | 0.158 | 0.359 | 0.256 | Ⅲ | 0.59 | 27 |
W3 | 0.305 | 0.124 | 0.146 | 0.425 | Ⅳ | 0.58 | 28 |
W31 | 0.296 | 0.038 | 0.239 | 0.427 | Ⅳ | 0.56 | 29 |
W6 | 0.304 | 0.019 | 0.147 | 0.530 | Ⅳ | 0.52 | 30 |
W18 | 0.303 | 0.018 | 0.149 | 0.530 | Ⅳ | 0.52 | 31 |
W4 | 0.181 | 0.123 | 0.265 | 0.431 | Ⅳ | 0.51 | 32 |
[1] | 刘宝珺, 谢俊, 张金亮. 我国剩余油技术研究现状与进展[J]. 西部地质, 2004, 37(4): 1-6. |
LIU Baojun, XIE Jun, ZHANG Jinliang. Research status and progress of residual oil technology in China[J]. Western Geology, 2004, 37(4): 1-6. | |
[2] | 李文龙. 密井网区井震结合储层描述方法[J]. 大庆石油地质与开发, 2016, 35(4): 137-142. |
LI Wenlong. Reservoir describing technique by the well-seismic combination for the dense well patterns[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 137-142. | |
[3] | 林承焰. 剩余油形成与分布[M]. 北京: 石油工业出版社, 1999. |
LIN Chengyan. Formation and distribution of residual oil[M]. Beijing: Petroleum Industry Press, 1999. | |
[4] | 毕永斌, 张雪娜, 马晓丽, 等. 复杂断块油藏开发潜力分析方法[J]. 石油地质与工程, 2021, 35(5): 56-61. |
BI Yongbin, ZHANG Xuena, MA Xiaoli, et al. Analysis method of development potential of complex fault block reservoir[J]. Petroleum Geology & Engineering, 2021, 35(5): 56-61. | |
[5] | 胡永宏, 贺思辉. 综合评价方法[M]. 北京: 科学出版社, 2000. |
HU Yonghong, HE Sihui. Comprehensive evaluation method[M]. Beijing: Science Press, 2000. | |
[6] | 王雪铭, 吴瑞明. 评价方法的发展与体系研究[J]. 科学技术与工程, 2009, 9(2): 351-352. |
WANG Xueming, WU Ruiming. Research on the development and system of evaluation methods[J]. Science Technology and Engineering, 2009, 9(2): 351-352. | |
[7] |
杨正明, 张英芝, 郝明强, 等. 低渗透油田储层综合评价方法[J]. 石油学报, 2006, 27(2): 64-67.
doi: 10.7623/syxb200602013 |
YANG Zhengming, ZHANG Yingzhi, HAO Mingqiang, et al. Comprehensive evaluation method for low permeability reservoirs[J]. Acta Petrologica Sinica, 2006, 27(2): 64-67.
doi: 10.7623/syxb200602013 |
|
[8] | 刘开第, 庞彦军, 姚立根, 等. 大气环境质量评价的未确知测度模型[J]. 环境科学, 2000, 21(3): 11-15. |
LIU Kaidi, PANG Yanjun, YAO Ligen, et al. Unascertained measurement model for atmospheric environmental quality assessment[J]. Environmental Science, 2000, 21(3): 11-15. | |
[9] | 刘开第, 吴和琴, 庞彦军, 等. 不确定性信息数学处理及应用[M]. 北京: 科学出版社, 1999. |
LIU Kaidi, WU Heqin, PANG Yanjun, et al. Mathematics treatment and application of uncertainty information[M]. Beijing: Science Press, 1999. | |
[10] | 刘开第, 吴和琴, 王念鹏, 等. 未确知数学[M]. 武汉: 华中科技大学出版社, 1997. |
LIU Kaidi, WU Heqin, WANG Nianpeng, et al. Uncertainty mathematics[M]. Wuhan: Huazhong University of Science & Technology Press, 1997. | |
[11] | 阳富强, 吴超, 李孜军. 未确知测度模型在矿仓硫精矿自燃危险性评价中的应用[J]. 煤炭学报, 2010, 35(2): 264-268. |
YANG Fuqiang, WU Chao, LI Zijun. Application of unascertained measure model in the risk assessment of spontaneous combustion of sulfur concentrate in mine bin[J]. Journal of China Coal Society, 2010, 35(2): 264-268. | |
[12] | 刘海, 陈华. 基于层次分析法的未确知测度理论泥石流危险性评价[J]. 长江流域资源与环境, 2012, 21(8): 1032-1038. |
LIU Hai, CHEN Hua. Risk assessment of debris flow based on unascertained measure theory of analytic hierarchy process[J]. Resources and Environment in the Yangtze Basin, 2012, 21(8): 1032-1038. | |
[13] | 何虎军, 苏生瑞, 王孝健. 基于未确知测度的崩塌危险性综合评价模型研究及应用[J]. 中南大学学报(自然科学版), 2013, 44(3): 1564-1570. |
HE Hujun, SU Shengrui, WANG Xiaojian. Research and application of comprehensive evaluation model of collapse risk based on unascertained measure[J]. Journal of Central South University (Natural Science Edition), 2013, 44(3): 1564-1570. | |
[14] | 朱兴琳, 方守恩, 王俊骅. 基于未确知测度理论的高等级公路交通安全评价[J]. 同济大学学报(自然科学版), 2010, 38(7): 1012-1017. |
ZHU Xinglin, FANG Shou’en, WANG Junhua. Traffic safety assessment of high-grade highway based on uncertainty measurement theory[J]. Journal of Tongji University(Natural Science), 2010, 38(7): 1012-1017. | |
[15] | 程乾生. 属性识别理论模型及其应用[J]. 北京大学学报(自然科学版), 1997, 33(1): 12-20. |
CHENG Qiansheng. Theoretical model of attribute recognition and its application[J]. Journal of Peking University(Natural Science Edition), 1997, 33(1): 12-20 | |
[16] | 章志敏, 魏翠萍. 层次分析若干理论与应用研究[J]. 曲阜师范大学学报(自然科学版), 2013, 39(1): 37-41. |
ZHANG Zhimin, WEI Cuiping. Research on some theories and applications of analytic hierarchy process[J]. Journal of Qufu Normal University(Natural Science Edition), 2013, 39(1): 37-41. | |
[17] | 林伟强, 曲丽丽, 朱露, 等. 井震藏结合判定井间砂体连通性研究及应用——以南堡油田M区中深层为例[J]. 油气藏评价与开发, 2022, 12(2): 373-381. |
LIN Weiqiang, QU Lili, ZHU Lu, et al. Evaluation of inter-well sand body Connectivity by combination of well, seismic, and reservoir and its application: Taking the middle and deep layers of M area of Nanpu Oilfield as an example[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 373-381. | |
[18] | 黄磊, 苟青松, 韩萱, 等. 基于未确知测度理论的含水层富水性评价方法[J]. 长江科学院院报, 2022, 39(7): 23-28. |
HUANG Lei, GOU Qingsong, HAN Xuan, et al. Method of evaluating the water-richness of aquifer based on unascertained measure theory[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(7): 23-28. | |
[19] | 曾佳龙, 刘琼, 黄锐, 等. 基于未确知测度理论的薄基岩厚松散含水层下煤层安全开采区域划定[J]. 采矿与安全工程学报, 2015, 32(6): 898-904. |
ZENG Jialong, LIU Qiong, HUANG Rui, et al. Determination of safe mining area of coal seam under thin bedrock and thick unconsolidated aquifer based on unascertained measure theory[J]. Journal of Mining and Safety Engineering, 2015, 32(6): 898-904. | |
[20] | 单博, 陈剑平, 王清. 基于最小熵理论和未确知测度理论的泥石流敏感性分析[J]. 岩土力学, 2014, 35(5): 1445-1454. |
SHAN Bo, CHEN Jianping, WANG Qing. Sensitivity analysis of debris flow based on minimum entropy theory and unascertained measure theory[J]. Geotechnical Mechanics, 2014, 35(5): 1445-1454. | |
[21] | 封从军, 鲍志东, 杨玲, 等. 三角洲前缘水下分流河道储集层构型及剩余油分布[J]. 石油勘探与开发, 2014, 41(3): 323-329. |
FENG Congjun, BAO Zhidong, YANG Ling, et al. Reservoir configuration and remaining oil distribution of underwater distributary channel in delta front[J]. Petroleum Exploration and Development, 2014, 41(3): 323-329. | |
[22] | 安玉华, 康楠, 胡治华, 等. 基于注采模式的水驱油藏剩余油分布特征[J]. 石油地质与工程, 2022, 36(3): 74-77. |
AN Yuhua, KANG Nan, HU Zhihua, et al. Distribution characteristics of remaining oil in water drive reservoir based on injection-production model[J]. Petroleum Geology & Engineering, 2022, 36(3): 74-77. | |
[23] |
赵伦, 梁宏伟, 张祥忠, 等. 砂体构型特征与剩余油分布模式——以哈萨克斯坦南图尔盖盆地Kumkol South油田为例[J]. 石油勘探与开发, 2016, 43(3): 433-441.
doi: 10.11698/PED.2016.03.14 |
ZHAO Lun, LIANG Hongwei, ZHANG Xiangzhong, et al. Sandbody configuration characteristics and remaining oil distribution pattern: Taking Kumkol South Oilfield in South Turgai Basin of Kazakhstan as an example[J]. Petroleum Exploration and Development, 2016, 43(3): 433-441.
doi: 10.11698/PED.2016.03.14 |
|
[24] | 王锦, 冯国奇, 王鑫. 东营凹陷湖盆陡坡带砂砾岩储层评价方法及应用——以LA区块沙四上亚段为例[J]. 石油地质与工程, 2022, 36(3): 61-68. |
WANG Jin, FENG Guoqi, WANG Xin. Evaluation method and application of glutenite reservoir in steep slope zone of lacustrine basin in Dongying depression: By taking E2s41 in LA block as an example[J]. Petroleum Geology & Engineering, 2022, 36(3): 61-68. | |
[25] | 侯博恒, 谢明英, 李伟, 等. 层内纵向强非均质性低渗油藏产能评价方法——以恩平凹陷M油藏为例[J]. 石油地质与工程, 2022, 36(5): 57-60. |
HOU Boheng, XIE Mingying, LI Wei, et al. Productivity evaluation method of strongly longitudinal heterogeneous reservoir within layers: By taking M reservoir of Enping sag as an example[J]. Petroleum Geology & Engineering, 2022, 36(5): 57-60. |
[1] | WEN Xing,WANG Kun,XIE Mingying,FENG Shasha,LI Li,LI Wei. Innovation and practice of secondary development technology for China’s first long-term abandoned deepwater oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 610-617. |
[2] | ZHOU Feng,HUANG Shilin,LI Xiaoming,LIAO Kaigui,LI Yong. Quantitative evaluation of tight gas reservoir classification based on analytic hierarchy process: A case study of Penglaizhen Formation gas reservoir in Xinchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 468-474. |
[3] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[4] | LI Guoyan, CHANG Lin, CHEN Meng, ZHONG Ping, CHEN Jie, WANG Lin, LI Yuping, ZHANG Yu. Evaluation method of remaining oil in water-flooded formation considering injected-water volumes and ion exchange [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 801-808. |
[5] | HE Dongbo, REN Lu, HAO Jie, LIU Xiaoping, CAO Qian. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725. |
[6] | YU Qiannan,ZHANG Han,LI Ning,TANG Huimin,LI Chenglong,WU Zhuolin,PENG Wei. Development quality evaluation of natural gas hydrate reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 385-392. |
[7] | LIU Yexuan,LIU Xiangjun,DING Yi,ZHOU Xin,LIANG Lixi. Evaluation method of fracability of shale oil reservoir considering influence of interlayer [J]. Reservoir Evaluation and Development, 2023, 13(1): 74-82. |
[8] | CHEN Ke,ZHANG Xudong,HE Wei,YIN Chao,TANG Lei,ZHANG Hu,YE Zhongbin. Influence of micro displacement effect of permeability on water flooding and the direction of tapping potential of fluvial reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 694-702. |
[9] | LU Yaqiu,WANG Jin,CAO Mengxi. Evaluation method of shale gas development area selection based on improved analytic hierarchy process [J]. Reservoir Evaluation and Development, 2021, 11(2): 204-211. |
[10] | LIU Jiajun,JIN Zhongkang,CAI Xinming. Streamline influencing factor analysis and its application of streamline adjustment in fault block oil reservoir [J]. Reservoir Evaluation and Development, 2019, 9(6): 24-29. |
[11] | XIONG Yu,ZHONG Hao,ZHOU Wensheng,LIU Cheng,GOU Li. Water driving physical simulation test of remaining oil based on 3D large-scale heterogeneous reservoir model [J]. Reservoir Evaluation and Development, 2019, 9(6): 16-23. |
|