Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (2): 260-268.doi: 10.13809/j.cnki.cn32-1825/te.2023.02.016
• Engineering Process • Previous Articles
YANG Zhaozhong1(),ZHENG Nanxin1,ZHU Jingyi1,2(
),LI Xiaogang1
Received:
2021-11-23
Online:
2023-04-26
Published:
2023-04-26
CLC Number:
Zhaozhong YANG,Nanxin ZHENG,Jingyi ZHU, et al. Preparation of nanoparticle-stabilized foam fracturing fluid and its foam stabilization mechanism[J]. Reservoir Evaluation and Development, 2023, 13(2): 260-268.
[1] | 罗成. CO2准干法压裂技术研究及应用[J]. 石油与天然气化工, 2021, 50(2): 83-87. |
LUO Cheng. Research and application of quasi-dry CO2 fracturing technology[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 83-87. | |
[2] | 蒋廷学, 左罗, 黄静. 少水压裂技术及展望[J]. 石油钻探技术, 2020, 48(5): 1-8. |
JIANG Tingxue, ZUO Luo, HUANG Jing. Development trends and prospects of less-water hydraulic fracturing technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. | |
[3] |
徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18.
doi: 10.3969/j.issn.1672-7703.2021.03.002 |
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18.
doi: 10.3969/j.issn.1672-7703.2021.03.002 |
|
[4] |
杜燕, 刘超, 高潮, 等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展挑战与展望[J]. 中国石油勘探, 2020, 25(2): 33-42.
doi: 10.3969/j.issn.1672-7703.2020.02.004 |
DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33-42.
doi: 10.3969/j.issn.1672-7703.2020.02.004 |
|
[5] | REIDENBACH V G, HARRIS P C, LEE Y N, et al. Rheological study of foam fracturing fluids using nitrogen and carbon dioxide[J]. SPE Production Engineering, 1986, 1(1): 31-41. |
[6] | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Research progresses on nanoparticle-stabilized foams in oil and gas production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
[7] | 刘子铭, 葛际江, 李嘉苏, 等. 长短碳链甜菜碱型起泡剂的协同增效作用研究[J]. 石油与天然气化工, 2022, 51(5): 92-98. |
LIU Ziming, GE Jijiang, LI Jiasu, et al. Synergistic effect of long and short carbon chain betaine type foaming agent[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 92-98. | |
[8] |
NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10): 6221-6227.
doi: 10.1021/ef5011995 |
[9] |
PENG B L, TANG J T, LUO J H, et al. Applications of nanotechnology in oil and gas industry: Progress and perspective[J]. The Canadian journal of chemical engineering, 2018, 96(1): 91-100.
doi: 10.1002/cjce.v96.1 |
[10] | 张小芹, 陈岳飞, 周雄, 等. 碳纳米颗粒掺杂过渡金属磷化物的制备及其析氢性能研究[J]. 石油与天然气化工, 2022, 51(5): 51-59. |
ZHANG Xiaoqin, CHEN Yuefei, ZHOU Xiong, et al. Preparation and hydrogen evolution performance of carbon nanoparticles-doped transition metal phosphides[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 51-59. | |
[11] |
MAGHZI A, MOHEBBI A, KHARRAT R, et al. An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery[J]. Petroleum Science and Technology, 2013, 31(5): 500-508.
doi: 10.1080/10916466.2010.518191 |
[12] |
ZHU J Y, YANG Z Z, LI X G, et al. Experimental study on the microscopic characteristics of foams stabilized by viscoelastic surfactant and nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 88-96.
doi: 10.1016/j.colsurfa.2019.03.087 |
[13] |
PAL N, VERMA A, OJHA K, et al. Nanoparticle-modified gemini-surfactant foams as efficient displacing fluids for enhanced oil recovery[J]. Journal of Molecular Liquids, 2020, 310: 113193.
doi: 10.1016/j.molliq.2020.113193 |
[14] |
ALYOUSEF Z A, ALMOBARKY M A, SCHECHTER D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface science, 2018, 511: 365-373.
doi: S0021-9797(17)31082-2 pmid: 29031155 |
[15] | 杨滢. 高温高盐底水油藏氮气泡沫体系控水及机理研究[D]. 西安: 西安石油大学, 2018. |
YANG Ying. Research water control and mechanism of nitrogen foam system in high temperature and high salinity bottom water reservoir[D]. Xi’an: Xi’an Shiyou University, 2018. | |
[16] |
CHU K C, HU S W, TSAO H K, et al. Strong competition between adsorption and aggregation of surfactant in nanoscale systems[J]. Journal of Colloid and Interface science, 2019, 553: 674-681.
doi: 10.1016/j.jcis.2019.06.075 |
[17] |
LIU P S, NIU L Y, TAO X H, et al. Preparation of superhydrophobic-oleophilic quartz sand filter and its application in oil-water separation[J]. Applied Surface Science, 2018, 447: 656-663.
doi: 10.1016/j.apsusc.2018.04.030 |
[18] | 吴雪鹏. CO2响应清洁压裂液体系的构筑及循环利用机理研究[D]. 青岛: 中国石油大学(华东), 2018. |
WU Xuepeng. Study on the construction and recycling mechanism of CO2 response clean fracturing fluid system[D]. Qingdao: China University of Petroleum(East China), 2018. | |
[19] | 彭欢, 桑宇, 杨建, 等. 泡沫压裂液携砂性能评价方法研究进展及展望[J]. 钻采工艺, 2016, 39(3): 87-90. |
PENG Huan, SANG Yu, YANG Jian, et al. research progress and prospect of sand carrying performance evaluation methods of foam fracturing fluid[J]. Drilling & Production Technology, 2016, 39(3): 87-90. | |
[20] |
ZHU J Y, YANG Z Z, LI X G, et al. Settling behavior of the proppants in viscoelastic foams on the bubble scale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106216.
doi: 10.1016/j.petrol.2019.106216 |
[21] |
FEI Y, JOHNSON JR R L, GONZALEZ M, et al. Experimental and numerical investigation into nano-stabilized foams in low permeability reservoir hydraulic fracturing applications[J]. Fuel, 2018, 213: 133-143.
doi: 10.1016/j.fuel.2017.10.095 |
[22] |
BINKS B P, KIRKLAND M, RODRIGUES J A. Origin of stabilization of aqueous foams in nanoparticle-surfactant mixtures[J]. Soft Matter, 2008, 4(12): 2373-2382.
doi: 10.1039/b811291f |
[23] | 李兆敏, 王鹏, 李松岩, 等. 纳米颗粒提高二氧化碳泡沫稳定性的研究进展[J]. 西南石油大学学报(自然科学版), 2014, 36(4): 155-161. |
LI Zhaomin, WANG Peng, LI Songyan, et al. Advances of researches on improving the stability of CO2 foams by nanoparticles[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(4): 155-161. | |
[24] |
BINKS B P, LUMSDON S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23): 8622-8631.
doi: 10.1021/la000189s |
[1] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[2] | KANG Yili, SHAO Junhua, LIU Jiarong, CHEN Mingjun, YOU Lijun, CHEN Xueni, CAO Wangkun. Feasibility evaluation method and application of moderate in-situ gasification in deep tight coal & gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 237-249. |
[3] | HU Qiujia, LIU Chunchun, ZHANG Jianguo, CUI Xinrui, WANG Qian, WANG Qi, LI Jun, HE Shan. Machine learning-based coalbed methane well production prediction and fracturing parameter optimization [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 266-273. |
[4] | ZHANG Min, JIN Zhongkang, FENG Xubo. Characterization and application of flow heterogeneity in high water cut reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 274-283. |
[5] | LUO Xianbo, FENG Haichao, LIU Dong, ZHENG Wei, WANG Shutao, WANG Gongchang. Development patterns and strategies for offshore high-intensity steam stimulation with large well spacing [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 116-123. |
[6] | CHAI Nina, LI Jiarui, ZHANG Liwen, WANG Junjie, LIU Yapeng, ZHU Lun. Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 124-130. |
[7] | ZHANG Tao, CHEN Hongli, WANG Kun, GOU Haoran, ZHANG Yifan, TANG Tang, ZHOU Hangyu, ZUO Hengbo. Experimental study on proppant placement in rough fractures with shear slippage in shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 131-141. |
[8] | MAO Zhenqiang. Technical practice of enhanced oil recovery in medium and high permeability fault block reservoirs: A case study of Chun-47 block in Dongying Sag of Jiyang Depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 918-924. |
[9] | ZHAO Zhongxin, LI Hongda, YAN Yican, REN Lu. Key technologies for exploitation and utilization of geothermal fields in fluvial sandstone thermal reservoirs: A case study of Gaoshangpu-Liuzan geothermal field in Nanpu Sag, Bohai Bay Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 857-863. |
[10] | JIA Junhong, YU Guangming, LI Shuman, XIE Zhen, PENG Rong, TANG Yong. Analysis of key controlling factors for water injection deficiency in low-permeability oil reservoirs: A case study of Chang-8 reservoir in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 892-898. |
[11] | ZHU Haonan, CAO Cheng, ZHANG Liehui, ZHAO Yulong, PENG Xian, ZHAO Zihan, CHEN Xingyu. Mechanism and development direction of CO2-EGR [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 975-980. |
[12] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[13] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[14] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[15] | HE Faqi, LI Junlu, GAO Yilong, WU Jinwei, BAI Xingying, GAO Dun. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677. |
|