Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (3): 393-402.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.015
• Comprehensive Research • Previous Articles
Received:
2022-01-05
Online:
2023-06-26
Published:
2023-06-26
CLC Number:
Zuoya YANG,Xiaomin WU. Numerical simulation study on multi-layer combined exploitation of natural gas hydrate reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 393-402.
Table 1
Parameters and stratigraphic conditions of gas hydrate reservoir model"
参数 | 数值 |
---|---|
非稳定水合物层底部初始压力/MPa | 15.50 |
非稳定水合物层底部初始温度/°C | 16.59 |
初始孔隙度及 各相饱和度/% | 水饱和度SA=100.0,φ=35(上盖层) |
SH=34.0,SA=66.0,φ=35(水合物层Ⅰ) | |
SH=31.0,SA=61.2,SG=7.8,φ=33(水合物层Ⅱ) | |
SA=92.2,SG=7.8,φ=32(游离气层) | |
SA=100.0,φ=32(下盖层) | |
CH4/% | 100 |
地温梯度/(°C/m) | 0.044 3 |
孔隙水盐度/% | 3.05 |
本征渗透率k/10-3 μm2 | 2.9(上盖层&水合物层Ⅰ) |
1.5(水合物层Ⅱ) | |
7.4(游离气层&下盖层) | |
开采井内渗透率/10-3 μm2 | 1 |
湿热导率kΘRW/[W/(m·K)] | 1.7 |
干热导率kΘRD/[W/(m·K)] | 1.0 |
毛细压力模型[ | pcap=-p0[(S)-1/λ-1]1-λ |
S=(SA-SirA)/(SmxA-SirA) | |
残余水饱和度SirA/% | 30 |
毛细管系数λ | 0.45 |
静水压力p0 /Pa | 105 |
相对渗透率模型[ | krA=(SA)n,krG=(SG)nG |
SA=(SA-SirA)/(1-SirA) | |
SG=(SG-SirG)/(1-SirA) | |
水相相对渗透率衰减因子n | 3.572 |
气相相对渗透率衰减因子nG | 3.572 |
残余气饱和度SirG/% | 3 |
[1] |
YIN Z Y, LINGA P. Methane hydrates: A future clean energy resource[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2026-2036.
doi: 10.1016/j.cjche.2019.01.005 |
[2] |
ZHANG R W, LU J A, WEN P F, et al. Distribution of gas hydrate reservoir in the first production test region of the Shenhu area, South China Sea[J]. China Geology, 2018, 1(4): 493-504.
doi: 10.31035/cg2018049 |
[3] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas, 2021, 41(1): 1-14. | |
[4] |
REN X, GUO Z Y, NING F L, et al. Permeability of hydrate-bearing sediments[J]. Earth-Science Reviews, 2020, 202:103100.
doi: 10.1016/j.earscirev.2020.103100 |
[5] |
YIN Z Y, MORIDIS G, TAN H K, et al. Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium[J]. Applied Energy, 2018, 220: 681-704.
doi: 10.1016/j.apenergy.2018.03.075 |
[6] | 刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41. |
LIU Shugen, JIAO Kun, ZHANG Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41. | |
[7] |
FENG J C, WANG Y, LI X S, et al. Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells[J]. Energy, 2015, 79(1): 315-324.
doi: 10.1016/j.energy.2014.11.018 |
[8] |
WANG Y, FENG J C, LI X S, et al. Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation[J]. Applied Energy, 2017, 207(1): 562-572.
doi: 10.1016/j.apenergy.2017.06.068 |
[9] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1): 102-117. |
GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. | |
[10] |
YIN Z Y, MORIDIS G J, CHONG Z R, et al. Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium[J]. Applied Energy, 2018, 230: 444-459.
doi: 10.1016/j.apenergy.2018.08.115 |
[11] |
QIN X W, LU J A, LU H L, et al. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea[J]. China Geology, 2020, 3(2): 210-220.
doi: 10.31035/cg2020038 |
[12] |
BOSWELL R, SCHODERBEK D, COLLETT T S, et al. The Iġnik Sikumi Field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2017, 31(1): 140-153.
doi: 10.1021/acs.energyfuels.6b01909 |
[13] | 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1-8. |
ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China offshore oil and gas, 2017, 29(4): 1-8. | |
[14] | HANCOCK S H, COLLETT T S, DALLIMORE S R, et al. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well[C]// Paper presented at the 2002 Mallik International Symposium on Gas Hydrate Production Research Well Program, Makuhari, Japan, December 2003. |
[15] | DALLIMORE S R, WRIGHT J F, NIXON F M, et al. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCan/Aurora Mallik gas hydrate production research well[C]// Paper ICGH-5829 presented at the proceedings of the 6th International Conference on Gas Hydrates, Vancouver, Canada, July 2008. |
[16] |
RUTQVIST J, MORIDIS G J, GROVER T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production[J]. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12.
doi: 10.1016/j.petrol.2009.02.013 |
[17] | KURIHARA M, FUNATSU K. Analysis of Production Data for 2007/2008 Mallik gas hydrate production tests in Canada[C]// Paper SPE-132155-MS presented at the International Oil and Gas Conference and Exhibition in China, Beijing, China, June 2010. |
[18] |
LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.
doi: 10.31035/cg2018003 |
[19] |
YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209.
doi: 10.31035/cg2020043 |
[20] |
KURIHARA M, SATO A, FUNATSU K, et al. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation[J]. Marine and Petroleum Geology, 2011, 28(2): 502-516.
doi: 10.1016/j.marpetgeo.2010.01.007 |
[21] |
苏正, 何勇, 吴能友. 南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J]. 热带海洋学报, 2012, 31(5): 74-82.
doi: 10.11978/j.issn.1009-5470.2012.05.011 |
SU Zheng, HE Yong, WU Nengyou. Numerical simulation on production potential of hydrate deposits by thermal stimulation[J]. Journal of Tropical Oceanography. 2012, 31(5): 74-82.
doi: 10.11978/j.issn.1009-5470.2012.05.011 |
|
[22] |
BOSWELL R, MYSHAKIN E M, MORIDIS G J, et al. India National Gas Hydrate Program Expedition 02 summary of scientific results: Numerical simulation of reservoir response to depressurization[J]. Marine and Petroleum Geology, 2019, 108: 154-166.
doi: 10.1016/j.marpetgeo.2018.09.026 |
[1] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
[2] | YU Qiannan,ZHANG Han,LI Ning,TANG Huimin,LI Chenglong,WU Zhuolin,PENG Wei. Development quality evaluation of natural gas hydrate reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 385-392. |
[3] | CHENG Xiaojun. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909. |
[4] | LI Chao,JIANG Chao,GUAN Yanling,ZONG Congcong,QU Hua,WU Qiaolan. Ground temperature response and thermal effect radius of heat transfer of deep buried pipe [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 859-868. |
[5] | ZHAO Kebin,SUN Changqing,GUO Jiaqi,WU Chuanzhi. Enrichment characteristics and accumulation mechanism of natural gas hydrate in the Gulf of Mexico: Cases study of study area WR313 and GC955 [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 669-679. |
[6] | KANG Yuzhu. Exploration of accumulation conditions of natural gas hydrate reservoirs in the South China Sea Block [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 659-668. |
[7] | Zhang Yi,Shen Lei,Tian Xijun,Hu Junzhi,Liu Peng. Optimization of amount of methanol injection in gas gathering station based on water dew point analysis: A case of gas gathering station of Zizhou gas field [J]. Reservoir Evaluation and Development, 2018, 8(5): 60-63. |
[8] | Xue Heng,Huang Zuxi,Zhao Liqiang,Wang Hehua,Liu Pingli,Liu Fei,Cheng Yi,Cen Yuda. Optimization study on horizontal well acidizing modes and injection parameters in carbonate reservoir [J]. Reservoir Evaluation and Development, 2018, 8(3): 66-72. |
|