Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 656-663.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.015
• Methodological Theory • Previous Articles Next Articles
YANG Shugang1,2(), REN Jinman3, CAI Mingyu1,2, LIU Haotong1, LIU Shuangxing1,2, XUE Ming1,2, ZHANG Kunfeng1,2(
)
Received:
2024-04-25
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
YANG Shugang,REN Jinman,CAI Mingyu, et al. Investigation on occurrence states of CO2 storage in formations with gas field produced water reinjection[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 656-663.
Table 1
Chemical reaction equations between major metal ions in gas field produced water and CO2"
序号 | 化学反应式 | 次生矿物 |
---|---|---|
1 | CO2(g) + H2O(l) | |
2 | H2CO3(aq) | |
3 | HCO | |
4 | Ca2+(aq) + | 方解石 |
5 | Fe2+(aq) + | 菱铁矿 |
6 | Mg2+(aq) + | 菱镁矿 |
7 | Ba2+(aq) + | 毒重石 |
8 | Ca2+(aq) + Mg2+(aq) + 2 | 白云石 |
9 | Mn2+(aq)+ | 碳酸锰 |
10 | Sr2+(aq)+ | 菱锶矿 |
Table 2
Chemical reaction equations of CO2-gas field produced water-reinjection reservoir rock minerals"
序号 | 矿物名称 | 化学反应式 | 次生矿物 |
---|---|---|---|
1 | 方解石 | CaCO3+H+ → Ca2++ | 完全溶解 |
2 | 白云石 | CaMg(CO3)2+2H+ → Ca2++Mg2++2HCO | 完全溶解 |
3 | 钾长石 | 2KAlSi3O8 + 9H2O + 2H+ → 2K+ + Al2Si2O5(OH)4 + 4H4SiO4 | 高岭石 |
4 | 钠长石 | 2NaAlSi3O8 + H2O + CO2 → 2Na+ + 2HCO | 高岭石,石英 |
NaAlSi3O8 +H2O + CO2 → NaAlCO3(OH)2 +3SiO2 | 片钠铝石,石英 | ||
5 | 钙长石 | CaAl2Si2O8 + H2CO3 + H2O → CaCO3 + Al2Si2O5(OH)4 | 高岭石,方解石 |
CaAl2Si2O8 +2Na++2CO2+3H2O → 2NaAlCO3(OH)2 + 3CaCO3 + 2SiO2 + 2H+ | 片钠铝石,石英,方解石 | ||
6 | 高岭石 | Al2Si2O5(OH)4+H2O+2CO2+2Na+ → NaAlCO3(OH)2+2SiO2+2H+ | 片钠铝石,石英 |
7 | 伊利石 | K0.85Mg0.25Al2.35Si3.4O10(OH)2 + 8.4H+ → 2.35Al3+ + 0.85K+ + 0.25Mg2+ + 5.2H2O + 3.4SiO2 | 石英 |
8 | 绿泥石 | (Fe, Mg)5Al2Si3O10(OH)8+8H+ → 3SiO2+2.5Fe2++2.5Mg2++8H2O+ 2AlO | 石英 |
Table 5
Model fitting results between CO2 dissolution-mineralization quantity and CO2 pressure"
采出水编号 | 砂岩 | 灰岩 | ||||||
---|---|---|---|---|---|---|---|---|
a | b | c | R2 | a | b | c | R2 | |
PW1 | 1.749 | 45.41 | 0.565 4 | 0.992 0 | 1.290 0 | 38.96 | 0.560 3 | 0.992 6 |
PW2 | 1.558 | 36.44 | 0.561 6 | 0.993 0 | 1.009 0 | 26.79 | 0.539 9 | 0.993 7 |
PW3 | 1.390 | 28.91 | 0.558 8 | 0.994 5 | 0.827 0 | 20.56 | 0.525 7 | 0.993 7 |
PW4 | 1.246 | 23.74 | 0.560 9 | 0.995 8 | 0.674 5 | 16.22 | 0.511 7 | 0.992 9 |
PW5 | 1.135 | 20.62 | 0.569 5 | 0.996 9 | 0.541 5 | 11.28 | 0.508 4 | 0.992 4 |
Table 6
Changes in molar quantity of major minerals during CO2-simulated gas field produced water-rock interactions"
压力/MPa | 各矿物组成物质的量/mol | ||||
---|---|---|---|---|---|
灰岩 | 砂岩 | ||||
方解石 | 白云石 | 绿泥石 | 伊利石 | 长石 | |
变化幅度 | 0.26%~0.77% | -8.17% ~ -5.30% | 完全反应 | 12% ~ 252% | 完全反应 |
初始值 | 4.150 0 | 0.407 6 | 0.047 96 | 0.089 3 | 0.422 7 |
1 | 4.182 0 | 0.386 0 | 0.040 24 | 0.099 6 | 0.416 3 |
3 | 4.179 8 | 0.382 6 | 0.023 31 | 0.130 2 | 0.378 0 |
6 | 4.176 2 | 0.378 6 | 0 | 0.224 5 | 0.207 5 |
8 | 4.173 4 | 0.375 9 | 0 | 0.306 6 | 0.018 9 |
10 | 4.171 2 | 0.374 5 | 0 | 0.314 8 | 0 |
14 | 4.170 6 | 0.374 3 | 0 | 0.314 8 | 0 |
20 | 4.163 0 | 0.382 0 | 0 | 0.314 8 | 0 |
40 | 4.160 6 | 0.385 2 | 0 | 0.314 8 | 0 |
[1] | 王延永, 彭玺伊, 王晓光, 等. 浮力与毛管力协同作用下层状咸水层中CO2运移机制[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 96-106. |
WANG Yanyong, PENG Xiyi, WANG Xiaoguang, et al. Mechanism of buoyancy and capillary forces dominated CO2 migration in layered saline aquifers[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 96-106. | |
[2] | LI S Y, WANG P, WANG Z J, et al. Strategy to enhance geological CO2 storage capacity in saline aquifer[J]. Geophysical Research Letters, 2023, 50(3): 101431. |
[3] | 杨术刚, 张坤峰, 刘双星, 等. 页岩渗透率测定方法及影响因素研究进展[J]. 油气地质与采收率, 2023, 30(5): 31-40. |
YANG Shugang, ZHANG Kunfeng, LIU Shuangxing, et al. Research progress on measurement methods and influencing factors of shale permeability[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 31-40. | |
[4] | 张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-9. |
ZHANG Kai, CHEN Zhangxing, LAN Haifan, et al. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 1-9. | |
[5] | 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6): 1009-1013. |
SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6): 1009-1013. | |
[6] | 桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023, 48(7): 2700-2716. |
SANG Shuxun, LIU Shiqi, ZHU Qianlin, et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society, 2023, 48(7): 2700-2716. | |
[7] | 曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882. |
CAO Molei, CHEN Jianping. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882. | |
[8] | 鞠斌山, 杨怡, 杨勇, 等. 高含水油藏CO2驱油与地质封存机理研究现状及待解决的关键问题[J]. 油气地质与采收率, 2023, 30(2): 53-67. |
JU Binshan, YANG Yi, YANG Yong, et al. Present research situation and key pending issues of CO2 flooding and geological storage mechanism in high water-cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 53-67. | |
[9] | BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443. |
[10] | 李海燕, 高阳, 王万福, 等. 南堡凹陷CO2在咸水层中的矿化封存机理[J]. 东北石油大学学报, 2014, 38(3): 94-101. |
LI Haiyan, GAO Yang, WANG Wanfu, et al. Experimental study on mineralization storage mechanism of CO2 in saline aquifers of Nanpu depression[J]. Journal of Northeast Petroleum University, 2014, 38(3): 94-101. | |
[11] | 芮振华, 李阳, 薛兆杰, 等. CO2提高油气采收率与地质封存关键技术发展建议[J]. 前瞻科技, 2023, 2(2): 145-160. |
RUI Zhenhua, LI Yang, XUE Zhaojie, et al. Development suggestions for key technologies of CO2-enhanced oil and gas recovery and geological sequestration[J]. Science and Technology Foresight, 2023, 2(2): 145-160. | |
[12] | 杨术刚, 张坤峰, 陈宏坤, 等. 中国油气田采出水回注发展建议[J]. 天然气工业, 2022, 42(11): 106-116. |
YANG Shugang, ZHANG Kunfeng, CHEN Hongkun, et al. Suggestions on the development of produced water reinjection in oil and gas fields in China[J]. Natural Gas Industry, 2022, 42(11): 106-116. | |
[13] | 杨术刚, 刘双星, 蔡明玉, 等. 气田采出水回注协同二氧化碳地质封存分析[J]. 环境科学研究, 2023, 36(11): 2138-2147. |
YANG Shugang, LIU Shuangxing, CAI Mingyu, et al. Discussion on coordination of gas field produced water reinjection and carbon dioxide geological storage[J]. Research of Environmental Sciences, 2023, 36(11): 2138-2147. | |
[14] | PEARCE J K, DAWSON G K W, SOMMACAL S, et al. Micro CT and experimental study of carbonate precipitation from CO2 and produced water co-injection into sandstone[J]. Energies, 2021, 14(21): 6998. |
[15] | PEARCE J K, KHAN C, GOLDING S D, et al. Geological storage of CO2 and acid gases dissolved at surface in production water[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110052. |
[16] | ZHANG X Y, LI Q, WEI X C. Optimization of acid gas injection to improve solubility and residual trapping[J]. Greenhouse Gases: Science and Technology, 2021, 11(5): 1001-1023. |
[17] | 田巍. CO2在老油田地质封存中的赋存状态[J]. 地下空间与工程学报, 2021, 17(2): 618-625. |
TIAN Wei. Study on the existing state of CO2 in geological storage of old oilfields[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 618-625. | |
[18] | 曹小朋, 熊英, 冯其红, 等. 低渗透-致密油藏CO2驱油与封存协同评价方法[J]. 油气地质与采收率, 2023, 30(2): 44-52. |
CAO Xiaopeng, XIONG Ying, FENG Qihong, et al. Collaborative evaluation method of CO2 flooding and storage in low-permeability and tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 44-52. | |
[19] | 陈秀林, 王秀宇, 许昌民, 等. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
CHEN Xiulin, WANG Xiuyu, XU Changmin, et al. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. | |
[20] | 王璐, 张一帆, 刘逸盛, 等. 页岩储层原油赋存特征及CO2-原油竞争吸附机制分子动力学[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 128-136. |
WANG Lu, ZHANG Yifan, LIU Yisheng, et al. Molecular dynamics analysis on occurrence characteristics of shale oil and competitive adsorption mechanism of CO2 and oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 128-136. | |
[21] | 赵续荣, 陈志明, 李得轩, 等. 页岩油井缝网改造后CO2吞吐与埋存特征及其主控因素[J]. 大庆石油地质与开发, 2023, 42(6): 140-150. |
ZHAO Xurong, CHEN Zhiming, LI Dexuan, et al. Characteristics and its main controlling factors of CO2 huff-and-puff and storage of shale oil wells after fracture-network stimulation[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6): 140-150. | |
[22] | YANG S, LI X, ZHANG K, et al. The coupling effects of pore structure and rock mineralogy on the pre-Darcy behaviors in tight sandstone and shale[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110945. |
[23] | 张志军. 鄂尔多斯盆地东北部下三叠统刘家沟组砂岩岩石学特征研究[J]. 中国煤炭地质, 2022, 34(9): 18-26. |
ZHANG Zhijun. Study on the characteristics of sandstone in the lower Triassic Liujiagou formation in the northeastern of the Ordos Basin[J]. Coal Geology of China, 2022, 34(9): 18-26. | |
[24] | 文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘(中国地质大学(北京); 北京大学), 2022, 29(3): 11-24. |
WEN Dongguang, SONG Jian, DIAO Yujie, et al. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers (China University of Geosciences (Beijing); Peking University), 2022, 29(3): 11-24. | |
[25] | 王璐, 于青春. 地下咸水中Ca2+和Mg2+对CO2溶解度的影响[J]. 水文地质工程地质, 2015, 42(5): 22-28. |
WANG Lu, YU Qingchun. The effect of Ca2+ and Mg2+ on the solubility of CO2 in the formation brines [J]. Hydrogeology & Engineering Geology, 2015, 42(5): 22-28. | |
[26] | 林元华, 邓宽海, 宁华中, 等. 二氧化碳在地层水中的溶解度测定及预测模型[J]. 中国石油大学学报(自然科学版), 2021, 45(1): 117-126. |
LIN Yuanhua, DENG Kuanhai, NING Huazhong, et al. CO2 solubility test in formation water and prediction model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 117-126. | |
[27] | LARA CRUZ J, NEYROLLES E, CONTAMINE F, et al. Experimental study of carbon dioxide solubility in sodium chloride and calcium chloride brines at 333. 15 and 453. 15 K for pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 249-261. |
[28] | 于立松, 张卫东, 吴双亮, 等. 二氧化碳在深部盐水层中溶解封存规律的研究进展[J]. 新能源进展, 2015, 3(1): 75-80. |
YU Lisong, ZHANG Weidong, WU Shuangliang, et al. Research on dissolved sequestration of CO2 in deep saline aquifers[J]. Advances in New and Renewable Energy, 2015, 3(1): 75-80. | |
[29] | CARVALHO P J, PEREIRA L M C, GONCALVES N P F, et al. Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state[J]. Fluid Phase Equilibria, 2015, 388: 100-106. |
[30] | ENICK R M, KLARA S M. CO2 solubility in water and brine under reservoir conditions[J]. Chemical Engineering Communications, 1990, 90(1): 23-33. |
[31] | YAN W, HUANG S, STENBY E H. Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1460-1477. |
[32] | 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1): 7-10. |
YAN Zhiwei, LIU Huili, ZHANG Zhiwei. Influences of temperature and P C O 2 on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2009, 28(1): 7-10. | |
[33] | 肖林萍, 黄思静. 方解石和白云石溶蚀实验热力学模型及地质意义[J]. 矿物岩石, 2003, 23(1): 113-116. |
XIAO Linping, HUANG Sijing. Model of thermodynamics for dissolution of carbonate and its geological significances[J]. Journal of Mineralogy and Petrology, 2003, 23(1): 113-116. |
[1] | SUN Dongsheng, ZHANG Shunkang, WANG Zhilin, GE Zhengjun, LIN Bo. Calculation method for CO2 geological storage capacity of fault-block traps in Subei Basin based on safety considerations [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 641-645. |
[2] | WANG Zhanpeng, LIU Shuangxing, LIU Qi, YANG Shugang, ZHANG Min, XIAN Chenggang, WENG Yibin. Research progress on effects of CO2 injection on formations during geological storage [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 632-640. |
|