Reservoir Evaluation and Development ›› 2019, Vol. 9 ›› Issue (5): 54-62.
Previous Articles Next Articles
KANG Yili1,BAI Jiajia1,LI Xiangchen1,CHEN Mingjun1,YOU Lijun1,LI Xinlei1,LI Qing2,FANG Dazhi2
Received:
2019-04-20
Online:
2019-10-26
Published:
2019-10-26
CLC Number:
KANG Yili,BAI Jiajia,LI Xiangchen,CHEN Mingjun,YOU Lijun,LI Xinlei,LI Qing,FANG Dazhi. Influence of water-rock interaction on stress sensitivity of organic-rich shales: A case study from Longmaxi formation in the southeast area of Chongqing[J].Reservoir Evaluation and Development, 2019, 9(5): 54-62.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Composition and experimental methods of samples of Longmaxi formation in the southeast area of Chongqing"
样品 编号 | 深度/ m | 全岩分析/% | TOC/ % | 样品处理方式 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 黏土矿物 | ||||
A-1 | 2 823.47 | 56.9 | 2.5 | 6.8 | 3.5 | 4.5 | 4.7 | 21.1 | 4.69 | 干样应力加载—卸载—干样铺砂后应力加载—卸载 |
A-2 | 2 824.52 | 60.6 | 2.4 | 6.4 | 2.3 | 5.2 | 3.0 | 20.1 | 4.81 | 干样应力加载—卸载—碱敏实验后应力加载 |
A-3 | 2 825.35 | 61.9 | 2.1 | 5.6 | 3.3 | 3.9 | 2.9 | 20.3 | 4.76 | 干样应力加载—卸载—干燥铺砂后应力加载—卸载 |
A-4 | 2 826.35 | 62.9 | 1.6 | 5.8 | 2.6 | 4.2 | 2.5 | 20.4 | 4.72 | 干样应力加载—卸载—盐敏实验后应力加载 |
A-5 | 2 827.46 | 60.6 | 2.3 | 5.4 | 3.0 | 3.7 | 3.5 | 21.5 | 5.01 | 干样应力加载—卸载—水敏后应力加载 |
A-6 | 2 828.45 | 59.7 | 2.1 | 6.4 | 3.4 | 3.8 | 4.1 | 20.5 | 5.40 | 压裂液浸泡后应力加载—卸载 |
A-7 | 2 829.60 | 65.2 | 2.3 | 3.7 | 2.1 | 2.7 | 2.7 | 21.3 | 5.68 | 压裂液浸泡后应力加载—卸载 |
Table 3
Evaluation results of stress sensitivity of samples of Longmaxi formation in the southeast area of Chongqing during stress loading"
施加的有效 应力/MPa | 裂缝渗透率/10-3 μm2 | ||||
---|---|---|---|---|---|
A-1 | A-2 | A-3 | A-4 | A-5 | |
3 | 0.94 | 1.77 | 3.75 | 10.48 | 27.20 |
10 | 0.60 | 0.64 | 1.48 | 3.88 | 8.16 |
20 | 0.38 | 0.31 | 0.69 | 0.84 | 1.52 |
50 | 0.29 | 0.20 | 0.29 | 0.17 | 0.16 |
Ss | 0.28 | 0.48 | 0.51 | 0.62 | 0.68 |
应力敏感程度 | 弱 | 中等偏弱 | 中等偏强 | 中等偏强 | 中等偏强 |
Table 4
Median height of crack surface microconvex bodies before and after stress sensitive experiment of samples of Longmaxi formation in the southeast area of Chongqing(relative to reference plane height)"
样品 编号 | 应力敏感实验前 | 应力敏感实验后 | |||
---|---|---|---|---|---|
上裂缝面微凸体中值高度 | 下裂缝面微凸体中值高度 | 上裂缝面微凸体中值高度 | 下裂缝面微凸体中值高度 | ||
A-1 | 2.8 | 2.1 | 2.4 | 1.6 | |
A-2 | 6.1 | 4.2 | 5.2 | 3.8 | |
A-3 | 1.5 | 1.8 | 1.1 | 0.9 | |
A-4 | 1.7 | 2.3 | 1.4 | 2.0 | |
A-5 | 2.3 | 1.7 | 1.6 | 1.5 |
Table 5
Variation characteristics of JRC and θs of samples of Longmaxi formation in the southeast area of Chongqing before and after stress sensitive experiments"
样品 编号 | 实验前 | 实验后 | |||
---|---|---|---|---|---|
粗糙度 系数 | 裂缝倾角θs / (°) | 粗糙度 系数 | 裂缝倾角θs /(°) | ||
A-1 | 58.12 | 28.98 | 53.37 | 24.68 | |
A-2 | 58.07 | 30.95 | 55.81 | 24.73 | |
A-3 | 59.45 | 31.47 | 54.04 | 24.75 | |
A-4 | 64.08 | 28.22 | 56.29 | 26.14 | |
A-5 | 54.83 | 26.49 | 52.46 | 24.20 | |
平均值 | 58.91 | 29.22 | 54.39 | 24.90 |
[1] |
杨怀成, 毛国扬, 宋其仓 , 等. 彭页HF-1井页岩气藏大型压裂工艺技术[J]. 西南石油大学学报(自然科学版), 2014,36(5):117-122.
doi: 10.11885/j.issn.1674-5086.2012.08.30.04 |
[2] | 卢拥军, 王海燕, 管保山 , 等. 海相页岩压裂液低返排率成因[J]. 天然气工业, 2017,37(7):46-51. |
[3] | 田巍, 邓瑞健, 朱维耀 , 等. 页岩压裂缝网储层应力敏感性及对产能的影响[J]. 油气藏评价与开发, 2017,7(6):71-77. |
[4] | 张睿, 宁正福, 杨峰 , 等. 页岩应力敏感实验与机理[J]. 石油学报, 2015,36(2):224-231. |
[5] | 肖文联, 任席瑶, 赵金洲 , 等. 双组份裂缝岩石非线性有效应力模型研究[J]. 地球物理学报, 2018,61(12):5034-5043. |
[6] | 游利军, 王巧智, 康毅力 , 等. 压裂液浸润对页岩储层应力敏感性的影响[J]. 油气地质与采收率, 2014,21(6):102-106. |
[7] | 曹耐, 雷刚 . 致密储集层加压—卸压过程应力敏感性[J]. 石油勘探与开发, 2019,46(1):132-138. |
[8] | 朱维耀, 马东旭 . 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018,29(6):845-852. |
[9] |
DONG J J, HSU J Y, WU W J , et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A[J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(7):1141-1157.
doi: 10.1016/j.ijrmms.2010.06.019 |
[10] | 康毅力, 林冲, 游利军 , 等. 油基钻井完井液侵入对页岩储层应力敏感性的影响[J]. 天然气工业, 2015,35(6):64-69. |
[11] | 游利军, 程秋洋, 康毅力 , 等. 氧化液作用下富有机质页岩裂缝应力敏感性[J]. 油气地质与采收率, 2018,25(4):79-85. |
[12] | 何金钢, 康毅力, 游利军 , 等. 流体损害对页岩储层应力敏感性的影响[J]. 天然气地球科学, 2011,22(5):915-919. |
[13] | 张鹏, 李宁, 陈新民 . 一种新的裂隙三维表面粗糙度表征方法[J]. 岩石力学与工程学报, 2009,28(S2):3477-3483. |
[14] | HE C, WANG X H, LIU W S , et al. Microfiltration in recycling of marcellus shale flowback water: Solids removal and potential fouling of polymeric microfiltration membranes[J]. Journal of Membrane Science, 2014,462:88-95. |
[15] | 陈强 . 基于高分辨率成像技术的页岩孔隙结构表征[D]. 成都:西南石油大学, 2014. |
[16] | BAI J J, KANG Y L, CHEN M J , et al. Investigation of multi-gas transport behavior in shales via a pressure pulse method[J]. Chemical Engineering Journal, 2019,360:1667-1677. |
[17] | WU K L, CHEN Z X, LI X F . Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J]. Chemical Engineering Journal, 2015,281:813-825. |
[18] | 俞杨烽, 康毅力, 游利军 . 水膜厚度变化——特低渗透砂岩储层盐敏性的新机理[J]. 重庆大学学报, 2011,34(4):67-71. |
[19] | YOU L J, CHENG Q Y, KANG Y L , et al. Imbibition of oxidative fluid into organic-rich shale: Implication for oxidizing stimulation[J]. Energy & Fuels, 2018,32(10):10457-10468. |
[20] | 刘向君, 熊健, 梁利喜 . 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版), 2016,38(3):178-186. |
[21] | 游利军, 康毅力, 陈强 , 等. 氧化爆裂提高页岩气采收率的前景[J]. 天然气工业, 2017,37(5):53-61. |
[1] | XU Guochen,DU Juan,ZHU Mingchen. Practice and understanding of water huff-n-puff in shale oil of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 256-266. |
[2] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[3] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[4] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
[5] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[6] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[7] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[8] | HOU Dali, HAN Xin, TANG Hongming, GUO Jianchun, GONG Fengming, SUN Lei, QIANG Xianyu. Primary research on expression of kerogen in Longmaxi Shale and its adsorption characteristics [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646. |
[9] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[10] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[11] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[12] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[13] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[14] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[15] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
|