Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 476-486.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.002
• Specialist Forum • Previous Articles Next Articles
ZHANG Jinchuan1,2,3(),CHEN Shijing1,2,3,LI Zhongming4(),LANG Yue1,2,3,WANG Chunyan1,2,3,WANG Dongsheng1,2,3,LI Zhen1,2,3,TANG Xuan1,2,3,LIU Yang1,2,3,LI Pei1,2,3,TONG Zhongzheng1,2,3
Received:
2021-04-27
Online:
2021-08-19
Published:
2021-08-26
Contact:
LI Zhongming
E-mail:zhangjc@cugb.edu.cn;lzm87122@126.com
CLC Number:
Jinchuan ZHANG,Shijing CHEN,Zhongming LI, et al. Intelligent evaluation of shale gas resources[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 476-486.
Table 1
The main machine learning algorithm"
学习方法 | 常规学习 | 深度学习 | |||||
---|---|---|---|---|---|---|---|
原理 | 应用 | 算法 | 原理 | 应用 | 算法 | ||
监督学习 | 使用标准数据标定新数据 | 分类、检索、判断等 | 决策树、朴素贝叶斯、最小二乘法、逻辑回归、支持向量机、集成方法、袋装法和随机森林、Boosting、AdaBoost、K最近邻算法等 | 基于大数据的深层结构或多应用场景 | 空间分布、时间分布、时空节点记忆等 | 卷积神经网络、循环神经网络、深度置信网络、多视角、生成模型、受限玻尔兹曼机、图论推理及支持向量机等 | |
非监督学习 | 研究无标定数据的结构规律 | 检验、识别、预测等 | 聚类算法、主成分分析、奇异值分解、独立成分分析、线性判别分析等 | ||||
强化学习 | 数据与环境 关系 | 自动计算、 目标搜索等 | 神经网络、马尔可夫等 |
Table 2
The main characteristics of shale gas in unconventional oil and gas"
类型 | 成藏机理 | 关键成藏条件 | 地质及资源评价侧重点 | ||
---|---|---|---|---|---|
非常规 天然气 | 页岩气 | 吸附+游离 | 页岩生气 | 有机质类型、丰度、成熟度,储层物性,含气量及可采性等 | |
水合物 | 水合原理 | 低温高压 | 温度、压力、气源、含气量等 | ||
致密砂岩气 | 气水置换滞流 | 源储紧邻 | 气源条件、孔渗物性、源储关系、含气饱和度及润湿性等 | ||
煤层气 | 吸附机理 | 煤岩生气 | 显微组分、成熟度,储层物性,吸附含气量及可采性等 | ||
水溶气 | 充填+水合 | 气源+滞流 | 有机质类型和丰度、溶解度、气水比、地层压力、产水量等 | ||
常规 储层 油气 | 构造型 | 毛 细 管 力 | 构造遮挡 | 源岩、 输导、 圈闭 | 生烃条件、生储盖组合、储层特点、封盖能力、圈闭规模、输导体系、 时空匹配、油气藏保存、成藏模式等 |
地层岩性型 | 岩性遮挡 | ||||
特殊型 | 其他遮挡 | ||||
非常规 石油 | 油砂 | 蚀变 | 构造抬升 | 含油率、有机成分、可采性等 | |
油页岩 | 生烃终止 | 构造抬升 | 组分分析、含油率、灰分等 | ||
稠油 | 早熟或蚀变 | 断裂、抬升 | 原油成分,密度、黏度及应变性,含油饱和度、储层物性等 | ||
致密砂岩油 | 油水置换滞流 | 源储紧邻 | 有机质丰度和成熟度、储层和原油物性、含油率等 | ||
页岩油 | 吸附+游离 | 页岩生油 | 有机质丰度和成熟度、原油和储层物性、含油率、可动性等 |
Table 3
Comparison of main characteristics of three different types of shale and shale gas in China"
主要特点 | 页岩类型 | |||
---|---|---|---|---|
海相 | 海陆过渡/交互相 | 陆相(湖相) | ||
分布 | 层系厚度 | 小 | 大 | 大 |
单层厚度 | 大 | 小 | 中 | |
侧向变化 | 稳定 | 急剧 | 快 | |
有机质 | 类型 | Ⅰ、Ⅱ | Ⅱ、Ⅲ | Ⅰ、Ⅱ、Ⅲ |
丰度 | ≤10 %,变化稳定 | ≤30 %,急剧变化 | ≤10 %,变化 | |
成熟度 | 高过成熟 | 高过成熟—成熟 | 低熟—成熟 | |
矿物 | 黏土矿物 | 含量低 | 含量高 | 含量偏高 |
脆性矿物 | 含量高 | 含量低 | 含量偏低 | |
不稳定矿物 | 含量少 | 含量多 | 含量偏多 | |
敏感性 | 中—弱 | 强 | 中—强 | |
物性 | 孔隙 | 有机孔为主 | 无机孔为主 | 无机孔为主 |
裂缝 | 欠发育 | 发育 | 欠发育 | |
保存 | 作用因素 | 构造 | 构造+初次运移 | 初次运移 |
保存效果 | 差 | 差 | 好 | |
含气 | 吸附含气量 | 变化较大 | 占比较大 | 低 |
总含气量 | 变化较大 | 较低 | 低 | |
可采性 | 变化较大 | 较低 | 低 | |
分布 | 时代 | 早古生代或更早 | 晚古生代为主 | 中新生代 |
空间 | 南方为主 | 南、北方 | 北方为主 |
Table 4
Main parameters of shale gas resource evaluation"
参数类型 | 基本参数 | 作用 |
---|---|---|
盆地条件 | 盆地类型、盆地大小、地质时代、沉积环境、改造程度等 | 基础条件类比分析,计算参数取值约束,页岩含气性条件判断 |
页岩分布 | 有效面积、有效厚度、埋藏深度、断裂切割、分布形态等 | 确定页岩空间分布、体积大小,约束计算条件 |
产层条件 | 页岩密度、裂缝发育、孔渗物性、产层温压、产层流体等 | 确定页岩的储集能力,约束含气量及资源量计算 |
有机地化 | 有机质类型、TOC、Ro等 | 约束页岩生气及吸附能力等参数 |
含气性 | 吸附能力、含气量、含气结构、气体成分、可采能力等 | 页岩气资源评价的核心参数,是资源评价结果的高敏参数 |
勘探程度 | 探井数量、地震覆盖、发现情况、发现时间、成藏模式等 | 评判探勘发现效果,验证地质基本认识,预测未来资源增量变化 |
开发程度 | 生产历史、开发方案、开发井数、压裂改造、累计产量等 | 分析产能和产量变化规律,预测未来走势 |
[1] | 袁野, 吴超楠, 李秋莹. 人工智能产业核心技术的国际竞争态势分析[J]. 中国电子科学研究院学报, 2020, 15(11):1128-1138. |
YUAN Ye, WU Chaonan, LI Qiuying. Analysis of international competition in the core technology of artificial intelligence industry[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(11):1128-1138. | |
[2] | 李麒麟, 李子萤. 国际人工智能动态分析[J]. 中国科技信息, 2020, 624(6):109-111. |
LI Qilin, LI Ziying. International AI dynamic analysis[J]. China Science and Technology Information, 2020, 624(6):109-111. | |
[3] | MCCARTHY J. The inversion of functions defined by Turing machines[J]. Automata Studies, 1956: 177-181. |
[4] |
DAMASSINO N. The questioning Turing Test[J]. Minds and Machines, 2020, 30(4):563-587.
doi: 10.1007/s11023-020-09551-6 |
[5] | 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12):1445-1464. |
JIA Chengzao. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12):1445-1464. | |
[6] | 金之钧, 白振瑞, 杨雷. 能源发展趋势与能源科技发展方向的几点思考[J]. 中国科学院院刊, 2020, 35(5):576-582. |
JIN Zhijun, BAI Zhenrui, YANG Lei. Thinking on general trends of energy development and directions of energy science and technology[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(5):576-582. | |
[7] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1):1-11.
doi: 10.1016/S1876-3804(21)60001-0 |
KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11.
doi: 10.1016/S1876-3804(21)60001-0 |
|
[8] | 杨剑锋, 杜金虎, 杨勇, 等. 油气行业数字化转型研究与实践[J]. 石油学报, 2021, 42(2):248-258. |
YANG Jianfeng, DU Jinhu, YANG Yong, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2):248-258. | |
[9] | 宋洪庆, 都书一, 周园春, 等. 油气资源开发的大数据智能平台及应用分析[J]. 工程科学学报, 2021, 43(2):179-192. |
SONG Hongqing, DU Shuyi, ZHOU Yuanchun, et al. Big data intelligent platform and application analysis for oil and gas resource development[J]. Chinese Journal of Engineering, 2021, 43(2):179-192. | |
[10] |
HART P E, DUDA R O, EINAUDI M T. Prospector—A computer-based consultation system for mineral exploration[J]. Journal of the International Association for Mathematical Geology, 1978, 10(5):589-610.
doi: 10.1007/BF02461988 |
[11] | 郭珺, 邹鑫, 周子康, 等. 深度学习在油气地震勘探中的应用[J]. 中国石油和化工标准与质量, 2019, 39(20):86-90. |
GUO Jun, ZOU Xin, ZHOU Zikang, et al. Application of deep learning in oil and gas seismic exploration[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(20) : 86-90. | |
[12] | 郭长杰, 王浩翔, 刘晓, 等. 浅析机器学习技术在油气行业的应用场景[J]. 信息系统工程, 2017,(5):100-103. |
GUO Changjie, WANG Haoxiang, LIU Xiao, et al. A brief analysis of the application of machine learning in the oil and gas industry[J]. China CIO News, 2017, (5):100-103. | |
[13] | 彭涛, 张翔. 支持向量机及其在石油勘探开发中的应用综述[J]. 勘探地球物理进展, 2007,(2):91-95. |
PENG Tao, ZHANG Xiang. Review of support vector machine and its applications in petroleum exploration and development[J]. Progress in Exploration Geophysics, 2007, (2):91-95. | |
[14] | 杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6):36-40. |
YANG Jianfeng, QIAO Peirui, LI Yongmei, et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 2019, 35(6):36-40. | |
[15] | 闵超, 代博仁, 张馨慧, 等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6):1-15. |
MIN Chao, DAI Boren, ZHANG Xinhui, et al. A review of the application progress of machine learning in oil and gas industry[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6):1-15. | |
[16] | 孙健, 李琪, 陈明强, 等. 基于机器学习的油气水层随钻识别模型优选[J]. 西安石油大学学报(自然科学版), 2019, 34(5):79-85. |
SUN Jian, LI Qi, CHEN Mingqiang, et al. Optimization of model for identification of oil/gas and water layers while drilling based on machine learning[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(5):79-85. | |
[17] |
MENELEY R A, CALVERLEY A E, LOGAN K G, et al. Resource assessment methodologies: Current status and future direction[J]. AAPG Bulletin, 2003, 87(4):535-540.
doi: 10.1306/10180202006 |
[18] | 吴晓智, 王社教, 郑民, 等. 常规与非常规油气资源评价技术规范体系建立及意义[J]. 天然气地球科学, 2016, 27(9):1640-1650. |
WU Xiaozhi, WANG Shejiao, ZHENG min, et al. Standard system establishment for conventional and unconventional hydrocarbon resources assessment techniques and its significance[J]. Natural Gas Geoscience, 2016, 27(9):1640-1650. | |
[19] | 赵文智, 胡素云, 沈成喜, 等. 油气资源评价的总体思路和方法体系[J]. 石油学报, 2005, 26(S1):25-29. |
ZHAO Wenzhi, HU Suyun, SHEN Chengxi, et al. The general idea and method system of oil and gas resource evaluation[J]. Acta Petrolei Sinica, 2005, 26(S1):25-29. | |
[20] | 金之钧, 张金川. 油气资源评价技术[M]. 北京: 石油工业出版社, 1999. |
JIN zhijun, ZHANG Jinchuan. Oil and gas resource evaluation technology[M]. Beijing: Petroleum Industry Press, 1999. | |
[21] | 李建忠, 吴晓智, 郑民, 等. 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 2016, 27(9):1557-1565. |
LI Jianzhong, WU Xiaozhi, ZHEN Min, et al. General philosophy, method system and key technology of conventional and unconventional oil & gas resource assessment[J]. Natural Gas Geoscience, 2016, 27(9):1557-1565. | |
[22] |
AHLBRANDT T S, KLETT T R. Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples[J]. Natural Resources Research, 2005, 14(3):187-209.
doi: 10.1007/s11053-005-8076-0 |
[23] | 宋振响, 徐旭辉, 王保华, 等. 页岩气资源评价方法研究进展与发展方向[J]. 石油与天然气地质, 2020, 41(5):1038-1047. |
SONG Zhenxiang, XU Xuhui, WANG Baohua, et al. Advances in shale gas resource assessment methods and their future evolvement[J]. Oil & Gas Geology, 2020, 41(5) : 1038-1047. | |
[24] | 陈承声, 史树勇, 王云鹏. 基于PetroMod四川盆地长宁地区五峰—龙马溪组优质页岩段吸附模拟研究[J]. 地球化学, 2019, 48(6):602-612. |
CHEN Chengsheng, SHI Shuyong, WANG Yunpeng. Adsorption simulation based on PetroMod of high-quality shale segment of Wufeng-Longmaxi Formation in Changning Area, Sichuan Basin[J]. Geochimica, 2019, 48(6):602-612. | |
[25] | 罗秋霞. 中国东部某些盆地下第三系生油岩演化的数学模拟[J]. 石油实验地质, 1980,(2):37-43. |
LUO Qiuxia. Mathematical simulation of the evolution of Paleogene source rocks in some basins in eastern China[J]. Petroleum Geology & Experiment, 1980, (2):37-43. | |
[26] | 汪本善, 刘德汉, 张丽洁, 等. 渤海湾盆地黄骅拗陷石油演化特征及人工模拟研究[J]. 石油学报, 1980,(1):43-51. |
WANG Benshan, LIU Dehan, ZHANG Lijie, et al. Ingestigation and simulation experiments on the characteristics of the genesis and evoluation of petroleum in Huanghua depression in bohai bay[J]. Acta Petrolei Sinica, 1980, (1):43-51. | |
[27] | 姜生玲, 张金川, 李博, 等. 中国现阶段页岩气资源评价方法分析[J]. 断块油气田, 2017, 24(5):642-646. |
JIANG Shengling, ZHANG Jinchuan, LI Bo, et al. Analysis of shale gas resources assessment method in China[J]. Fault-Block Oil & Gas Field, 2017, 24(5):642-646. | |
[28] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938. |
[29] | 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1):74-86. |
ZHANG Jinchuan, YANG Chao, CHEN Qian, et al. Deposition and distribution of potential shales in China[J]. Earth Science Frontiers, 2016, 23(1):74-86. | |
[30] |
王香增,, 高胜利, 高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41(3):294-304.
doi: 10.1016/S1876-3804(14)60035-5 |
WANG Xiangzeng, GAO Shengli, GAO Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3):294-304.
doi: 10.1016/S1876-3804(14)60035-5 |
|
[31] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. |
ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1):31-44. | |
[32] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. |
[1] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[2] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[3] | GAO Quanfang,ZHANG Peixian,GUAN Linlin,LI Yanjing,NI Feng. Influence of lower-level reverse faults on shale gas enrichment and high yield: A case study of Pingqiao Dong-1 Fault in Nanchuan area, southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 458-467. |
[4] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[5] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[6] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[7] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[8] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[9] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[10] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[11] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[12] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[13] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[14] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[15] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
|