Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (5): 730-735.doi: 10.13809/j.cnki.cn32-1825/te.2021.05.010
• Offshore Oil andGas Exploration and Development • Previous Articles Next Articles
LI Wei1(),TANG Fang1,HOU Boheng1,QIAN Yin2,CUI Chuanzhi2(
),LU Shuiqingshan2,WU Zhongwei2
Received:
2021-04-26
Online:
2021-10-12
Published:
2021-10-26
Contact:
CUI Chuanzhi
E-mail:liwei1@cnooc.com.cn;ccz2008@126.com
CLC Number:
Wei LI,Fang TANG,Boheng HOU, et al. A method for oil recovery prediction of sandstone reservoirs in the eastern South China Sea based on neural network[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 730-735.
Table 1
Training samples of neural network regression"
油藏 名称 | 含油面积 (km2) | 油层厚度 (m) | 孔隙度 (%) | 含油饱和度 (%) | 地层压力 (MPa) | 流度 (10-3 μm2/mPa·s) | 井网密度 (口/km2) | 渗透率 (10-3 μm2) | 地质储量 (104 m3) | 采收率 (%) |
---|---|---|---|---|---|---|---|---|---|---|
N1 | 7.2 | 3.5 | 15.8 | 61.0 | 28.6 | 822.1 | 0.98 | 271.3 | 164 | 76.5 |
N2 | 7.5 | 6.4 | 16.2 | 63.4 | 29.0 | 737.9 | 0.79 | 317.3 | 368 | 67.8 |
N3 | 8.9 | 2.0 | 16.5 | 61.1 | 29.0 | 656.5 | 0.13 | 282.3 | 134 | 64.5 |
N4 | 7.8 | 2.9 | 22.2 | 63.6 | 18.5 | 196.2 | 0.14 | 1 436.4 | 305 | 47.9 |
N5 | 5.5 | 5.2 | 15.4 | 61.6 | 29.2 | 534.2 | 1.09 | 192.3 | 193 | 73.4 |
N6 | 9.8 | 5.6 | 21.6 | 60.6 | 14.3 | 138.5 | 1.96 | 637.0 | 681 | 61.9 |
N7 | 6.4 | 2.8 | 19.9 | 46.5 | 16.0 | 143.5 | 3.21 | 660.0 | 149 | 62.2 |
N8 | 3.7 | 3.4 | 20.5 | 53.2 | 16.4 | 123.7 | 2.70 | 569.0 | 127 | 51.9 |
N9 | 10.9 | 5.6 | 21.3 | 75.8 | 20.1 | 345.4 | 2.11 | 1 088.0 | 912 | 67.0 |
| | | | | | | | | | |
N50 | 2.6 | 3.3 | 23.0 | 63.2 | 20.2 | 651.0 | 0.50 | 2 929.7 | 129 | 44.4 |
Table 3
Model test sample data"
油藏 名称 | 含油面积 (km2) | 油层厚度 (m) | 孔隙度 (%) | 含油饱和度 (%) | 地层压力 (MPa) | 流度 (10-3 μm2/mPa·s) | 井网密度 (口/km2) | 渗透率 (10-3 μm2) | 地质储量 (104 m3) | 采收率 (%) |
---|---|---|---|---|---|---|---|---|---|---|
H1 | 4.9 | 3.4 | 18.3 | 53.1 | 17.1 | 75.5 | 2.66 | 2 393.7 | 155 | 46.97 |
H2 | 5.2 | 4.4 | 24.2 | 75.6 | 18.2 | 369.9 | 4.42 | 3 587.7 | 402 | 53.87 |
H3 | 8.2 | 4.1 | 23.7 | 73.3 | 20.2 | 435.5 | 3.02 | 2 526.1 | 559 | 72.30 |
H4 | 9.1 | 4.3 | 25.0 | 71.8 | 22.3 | 534.2 | 3.13 | 3 098.3 | 668 | 69.72 |
H5 | 10.4 | 10.5 | 21.6 | 66.1 | 24.2 | 439.9 | 5.98 | 1 659.8 | 1 485 | 69.85 |
H6 | 2.4 | 2.0 | 21.9 | 58.8 | 19.6 | 284.3 | 1.60 | 1 648.7 | 60 | 64.56 |
Table 4
Comparison of results predicted by different models"
油藏 名称 | 实际采收率 (%) | 神经网络预测值(%) | 相对误差 (%) | 支持向量机回归预测值(%) | 相对误差(%) | 线性回归预测值(%) | 相对误差(%) |
---|---|---|---|---|---|---|---|
H1 | 46.97 | 47.23 | 0.55 | 51.77 | 10.22 | 49.60 | 5.60 |
H2 | 53.87 | 58.43 | 8.46 | 56.97 | 5.75 | 60.72 | 12.72 |
H3 | 72.30 | 63.71 | 11.88 | 56.10 | 22.41 | 60.00 | 17.01 |
H4 | 69.72 | 71.46 | 2.50 | 49.99 | 28.30 | 64.38 | 7.66 |
H5 | 69.85 | 73.55 | 5.30 | 64.42 | 7.77 | 77.84 | 11.44 |
H6 | 64.56 | 59.33 | 8.10 | 58.23 | 9.80 | 55.22 | 14.47 |
Table 6
Results of variance analysis"
分析项 | 偏差平方和 | 自由度 | F值 | F临界值 | 显著性 | 分析项 | 偏差平方和 | 自由度 | F值 | F临界值 | 显著性 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
含油面积 | 124.00 | 3.00 | 2.03 | 9.28 | 不显著 | 地层压力 | 61.00 | 3.00 | 1.00 | 9.28 | 不显著 | |
油层厚度 | 3 324.00 | 3.00 | 54.60 | 9.28 | 显著 | 流度 | 852.00 | 3.00 | 14.00 | 9.28 | 显著 | |
孔隙度 | 174.00 | 3.00 | 2.86 | 9.28 | 不显著 | 井网密度 | 1 489.00 | 3.00 | 24.47 | 9.28 | 显著 | |
含油饱和度 | 131.00 | 3.00 | 2.15 | 9.28 | 不显著 | 渗透率 | 631.00 | 3.00 | 10.36 | 9.28 | 显著 |
[1] | 钱其豪. 海上砂岩油藏高速开发驱替特征[D]. 北京:中国石油大学(北京),2011. |
QIAN Qihao. Marine sandstone reservoir high-speed development law[D]. Beijing: China University of Petroleum (Beijing), 2011. | |
[2] | 王锋. 盘油田复杂断块油藏注采井网优化[J]. 西安石油大学学报: 自然科学版, 2014, 29(5):58-60. |
WANG Feng. Optimization of reasonable injection-production well pattern in complex fault block of Linpan Oilfield[J]. Journal of Xi’an Shiyou University: Natural Science Edition, 2014, 29(5):58-60. | |
[3] | 任耀宇, 张弦, 罗鹏飞, 等. 特低渗透轻质油藏热水驱提高采收率试验研究[J]. 非常规油气, 2019, 6(1):69-74. |
REN Yaoyu, ZHANG Xian, LUO Pengfei, et al. An experimental study of hot water flood for enhancing oil recovery in ultra-low permeability reservoir[J]. Unconventional Oil & Gas, 2019, 6(1):69-74. | |
[4] | 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019, 6(1):107-114. |
JIA Kaifeng, JI Dongchao, GAO Jindong, et al. The exisiting state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019, 6(1):107-114. | |
[5] | 冯沙沙, 王亚会, 李伟, 等. 南海东部砂岩油藏采收率经验公式的确定[J]. 石油化工应用, 2015, 34(1):74-77. |
FENG Shasha, WANG Yahui, LI Wei, et al. The determination of recovery factor empirical formula in Nanhai east sandstone reservoirs[J]. Petrochemical Industry Application, 2015, 34(1):74-77. | |
[6] | 段宇, 杨东东, 王美楠, 等. 渤海水驱砂岩油藏采收率经验公式研究[J]. 石化技术, 2018, 25(9):146-147. |
DUAN Yu, YANG Dongdong, WANG Meinan, et al. The research of the method on recovery efficiency empirical formula of water-drive sandstone reservoir of Bohai oil field[J]. Petrochemical Industry Technology, 2018, 25(9):146-147. | |
[7] | 鲁瑞彬, 刘双琪, 胡琳, 等. 水驱砂岩油田动态采收率计算新方法[J]. 西安石油大学学报(自然科学版), 2019, 34(4):60-66. |
LU Ruibin, LIU Shuangqi, HU Lin, et al. A new method for calculating dynamic recovery factor of water-flooding sandstone oilfield[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(4):60-66. | |
[8] | 吴春新. 基于RS-LSSVM水驱井组采出程度计算模型——以渤海黄河口凹陷为例[J]. 新疆石油天然气, 2019, 15(3):49-53. |
WU Chunxin. Calculation model of water flooding well group recovery degree based on RS-LSSVM——Taking Huanghe River sag in Bohai as example[J]. Xinjiang Oil & Gas, 2019, 15(3):49-53. | |
[9] | 王敏, 陈民锋, 刘广为, 等. 主成分分析法确定海上油田水驱效果评价关键指标[J]. 油气地质与采收率, 2015, 22(2):112-116. |
WANG Min, CHEN Minfeng, LIU Guangwei, et al. Application of principal component analysis on determining the key evaluation indicators of water flooding effects in offshore oilfield[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(2):112-116. | |
[10] | 许晓明, 李彦兰, 孙景民. 基于模糊数学的油藏干层识别研究[J]. 西南石油大学学报(自然科学版), 2019, 41(2):45-52. |
XU Xiaoming, LI Yanlan, SUN Jingmin. Study on identification of dry layers based on fuzzy mathematics[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(2):45-52. | |
[11] | WANG J K, HU J H, ZHANG Y, et al. Investigation of imbibition areas during well shut-in based on mercury injection experiment and BP neural network[J]. Fuel, 2019, 254: 115621.1-115621.8. |
[12] | 唐振国, 迟博, 吕金龙, 等. 基于多属性神经网络地震相的扶余油层砂体精细刻画及应用[J]. 非常规油气, 2020, 7(2):41-48. |
TANG Zhenguo, CHI Bo, LYU Jinlong, et al. Fine characterization and application of sand body in Fuyu reservoir based on seismic facies by multi-attribute neural network[J]. Unconventional Oil & Gas, 2020, 7(2):41-48. | |
[13] | 吴君达, 李治平, 孙妍, 等. 基于神经网络的剩余油分布预测及注采参数优化[J]. 油气地质与采收率, 2020, 27(4):85-93. |
WU Junda, LI Zhiping, SUN Yan, et al. Neural network-based prediction of remaining oil distribution and optimization of injection-production parameters[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4):85-93. | |
[14] | 杨丽娜, 解国军. 油气资源丰度预测的人工神经网络方法——以济阳坳陷为例[J]. 石油天然气学报, 2007, 29(1):55-58. |
YANG Lina, XIE Guojun. Prediction of abundance of hydrocarbon resources with artificial neural network method——Taking Jiyang depression for example[J]. Journal of Oil and Gas Technology, 2007, 29(1):55-58. | |
[15] | 刘苏苏, 孙立民. 支持向量机与RBF神经网络回归性能比较研究[J]. 计算机工程与设计, 2011, 32(12):4202-4205. |
LIU Susu, SUN Limin. Performance comparison of regression prediction on support vector machine and RBF neural network[J]. Computer Engineering and Design, 2011, 32(12):4202-4205. | |
[16] | 刘文超, 卢祥国, 刘进祥, 等. 一种基于BP神经网络的调驱增油预测方法[J]. 西安石油大学学报(自然科学版), 2012, 27(1):47-52. |
LIU Wenchao, LU Xiangguo, LIU Jinxiang, et al. Prediction method of oil increment of profile-control and flooding measures using BP neural network based on core flooding parameters[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2012, 27(1):47-52. | |
[17] | ZHOU Deqiang. Grey verhulst model based on BP neural network optimization for oil production forecasting[J]. International Journal of Energy Science, 2012, 2(3):115-118. |
[18] | ZHOU Yingming, WANG Qiushi, WANG Peng, et al. Moisture content of crude oil based on BP neural network algorithm to predict in oilfield[J]. Applied Mechanics & Materials, 2012, 170-173:1290-1293. |
[19] |
YU S W, ZHU K J, DIAO F Q. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction[J]. Applied Mathematics and Computation, 2007, 195(1):66-75.
doi: 10.1016/j.amc.2007.04.088 |
[20] | 张烈平, 周德俭, 牛秦洲. 基于BP神经网络的预测建模系统的研究与实现[J]. 计算机仿真, 2004(9):48-50. |
ZHANG Lieping, ZHOU Dejian, NIU Qinzhou. Research and realization of forecasting model system based on BP neural network[J]. Computer Simulation, 2004(9):48-50. | |
[21] | 王涛. 人工神经网络在CO2驱采收率预测中的应用[J]. 特种油气藏, 2011, 18(4):77-79. |
WANG Tao. Application of artificial neural network in recovery factor forecast of carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2011, 18(4):77-79. |
[1] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[2] | XU Ning, CHEN Zhewei, XU Wanchen, WANG Ling, CUI Xiaolei, JIANG Meizhong, ZHAN Changwu. Prediction and evaluation method for development effect of shale oil storage volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748. |
[3] | HU Jun, YANG Jiakun, XU Hongcheng, ZHOU Dongliang, XU Feng, SHI Yuxia, ZHANG Siyuan, SONG Lina, PEI Gen, FAN Jiayi. A new method for multi-factor capacity review of underground gas storage under complex geological conditions [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 795-804. |
[4] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[5] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[6] | TANG Jiandong, WANG Zhilin, GE Zhengjun. CO2 flooding technology and its application in Jiangsu Oilfield in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 18-25. |
[7] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[8] | SHI Yan, XIE Junhui, GUO Xiaoting, WU Tong, CHEN Dequan, SUN Lin, DU Daijun. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82. |
[9] | ZHAO Yanting,SHEN Jian,ZHAO Sumin,WEN Shuang,ZHANG Sen. Well completion technology optimization and application effect analysis of medium-deep sandstone reinjection wells: A case study of Minghuazhen Formation in Tianjin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 765-772. |
[10] | REN Hong,LI Weiqi,GUO Zhongchun,YANG Xiaoteng,XU Jian,WANG Xiao. Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 789-800. |
[11] | ZHAO Di, MA Sen, CAO Yanhui. Seismic rock physics analysis and prediction model establishment of Shaximiao Formation in Zhongjiang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 608-613. |
[12] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
[13] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[14] | LIANG Honggang,DENG Feng,MA Hongtao,SUN Li,DING Hui,YANG Junying. Application of JI-FI inversion technology to prediction of thin sandstone reservoir: A case study of K1bs 3 upper thin sandstone reservoir in XH area [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 910-917. |
[15] | PAN Yi,ZHAO Qiuxia,SUN Lei,LIU Jiang,WANG Tao,GUO Deming. Prediction model of minimum miscible pressure in CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 748-753. |
|