Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (6): 834-843.doi: 10.13809/j.cnki.cn32-1825/te.2023.06.015
• Comprehensive Research • Previous Articles Next Articles
LIANG Yunpei1,2(),ZHANG Huaijun1,2,WANG Lichun3,QIN Chaozhong1,2,TIAN Jian1,2(),CHEN Qiang1,2,SHI Bowen1,2
Received:
2023-01-18
Online:
2024-01-03
Published:
2023-12-26
CLC Number:
Yunpei LIANG,Huaijun ZHANG,Lichun WANG, et al. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843.
[1] | 刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素[J]. 断块油气田, 2020, 27(3): 394-398. |
LIU Xuewei. Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 394-398. | |
[2] | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14. |
ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14. | |
[3] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154.
doi: 10.1016/j.fuel.2018.05.040 |
[4] | 温庆志, 王淑婷, 高金剑, 等. 复杂缝网导流能力实验研究[J]. 油气地质与采收率, 2016, 23(5): 116-121. |
WEN Qingzhi, WANG Shuting, GAO Jinjian, et al. Research on flow conductivity experiment in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 116-121. | |
[5] | 刘先珊, 曾南豆, 李涛, 等. 基于改进PFC流固耦合算法的页岩水力压裂裂缝扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(9): 3545-3560. |
LIU Xianshan, CENG Nandou, LI Tao, et al. Propagation investigation of hydraulic fractures for shales considering improved hydro-mechanical coupling algorithm based on PFC software[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3545-3560. | |
[6] |
ZHAO H F, CHEN H, LIU G H, et al. New insight into mechanisms of fracture network generation in shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2013, 110: 193-198.
doi: 10.1016/j.petrol.2013.08.046 |
[7] | 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528. |
XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528. | |
[8] |
ZOU J P, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165.
doi: 10.1016/j.compgeo.2021.104165 |
[9] | SAHAI R, MOGHANLOO R G. Proppant transport in complex fracture networks: A review[J]. Journal of Petroleum Science and Engineering, 2019, 182: 1-16. |
[10] |
TONG S Y, MOHANTY K K. Proppant transport study in fractures with intersections[J]. Fuel, 2016, 181: 463-477.
doi: 10.1016/j.fuel.2016.04.144 |
[11] |
GUO T K, ZHANG S C, GAO J, et al. Experimental study of fracture permeability for stimulated reservoir volume(SRV) in shale formation[J]. Transport in Porous Media, 2013, 98(3): 525-542.
doi: 10.1007/s11242-013-0157-7 |
[12] | 邹雨时, 张士诚, 马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程, 2013, 13(18): 5152-5157. |
ZOU Yushi, ZHANG Shicheng, MA Xinfang. Study on formation conditions and conductivity of shale fractured shear fractures[J]. Science Technology and Engineering, 2013, 13(18): 5152-5157. | |
[13] | 苟兴豪. 页岩自支撑裂缝导流能力模型研究[D]. 成都: 西南石油大学, 2017. |
GOU Xinghao. Research on numerical method for unpropped fracture conductivity of shale[D]. Chengdu: Southwest Petroleum University, 2017. | |
[14] | LIU K R, SHENG J J. Experimental study of the effect of water-shale interaction on fracture generation and permeability change in shales under stress anisotropy[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 11-15. |
[15] |
ZHOU T, ZHANG S C, YANG L, et al. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 893-905.
doi: 10.1016/j.jngse.2016.10.036 |
[16] | JAVANMARD H, EBIGBO A, WALSH S, et al. No-flow fraction(NFF) permeability model for rough fractures under normal stress[J]. Water Resources Research, 2021, 57(3): 1-19. |
[17] |
KLING T, SCHWARZ J O, WENDLER F, et al. Fracture flow due to hydrothermally induced quartz growth[J]. Advances in Water Resources, 2017, 107: 93-107.
doi: 10.1016/j.advwatres.2017.06.011 |
[18] |
XIE L Z, GAO C, REN L, et al. Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations[J]. Environmental Earth Sciences, 2015, 73(11): 7061-7074.
doi: 10.1007/s12665-015-4256-3 |
[19] | ZIMMERMAN R W, BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1): 1-30. |
[20] |
WANG L C, CARDNAS M B. Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4977-4989.
doi: 10.1002/jgrb.v121.7 |
[21] |
LEE H S, CHO T F. Hydralic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318.
doi: 10.1007/s00603-002-0028-y |
[22] | HOPKINS D L. The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 175-202. |
[23] |
PYRAK-NOLTE L J, MORRIS J P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 245-262.
doi: 10.1016/S1365-1609(99)00104-5 |
[24] |
PETROVITCH C L, PYRAK-NOLTE L J, NOLTE D D. Combined scaling of fluid flow and seismic stiffness in single fractures[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1613-1623.
doi: 10.1007/s00603-014-0591-z |
[25] |
KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824.
doi: 10.1007/s00603-018-1498-x |
[26] |
SUTERA S P, SKALAK R. The history of Poiseuille’s law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
doi: 10.1146/fluid.1993.25.issue-1 |
[27] |
GONG Y B, SEDGHI M, PIRI M. Dynamic pore-scale modeling of residual trapping following imbibition in a rough-walled fracture[J]. Transport in Porous Media, 2021, 140(1): 143-179.
doi: 10.1007/s11242-021-01606-1 |
[28] |
WITHERSPOON P A, WANG J, IWAI K, et al. Validity of cubic law for fluid-flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024.
doi: 10.1029/WR016i006p01016 |
[29] | 李新岭. 数字裂缝建模及渗流属性计算研究[D]. 成都: 电子科技大学, 2020. |
LI Xinling. Research on digital fracture modeling and seepage property calculation[D]. Chengdu: University of Electronic Science and Technology of China, 2020. |
[1] | HE Faqi, LI Junlu, GAO Yilong, WU Jinwei, BAI Xingying, GAO Dun. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677. |
[2] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[3] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[4] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[5] | ZHENG Xin, ZHAO Yuchao, ZHAO Zihan, TANG Huiying, ZHAO Yulong. Mechanism investigation on in-situ stress characteristics and mechanical integrity of fracture-cavity carbonate underground gas storage reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 814-824. |
[6] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[7] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[8] | CHENG Hai,ZHANG Yiqun,WANG Yin,LIU Chao. Progress and understanding on geology-drilling engineering-mechanics coupling mechanism of ultra-deep directional wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 593-599. |
[9] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[10] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[11] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
[12] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[13] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[14] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[15] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
|