Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 569-576.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.006
• Methodological Theory • Previous Articles Next Articles
CHEN Xiang1,2(),WANG Guan1,2,LIU Pingli1,2(
),DU Juan1,2,WANG Ming1,2,CHEN Weihua3,LI Jinlong1,2,LIU Jinming1,2,LIU Fei3
Received:
2023-08-31
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Xiang CHEN,Guan WANG,Pingli LIU, et al. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576.
[1] | 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200. |
XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1): 187-200. | |
[2] | 王大鹏. 全球古生界海相碳酸盐岩油气富集规律研究[D]. 北京: 中国石油大学(北京), 2016. |
WANG Dapeng. Hydrocarbon accumulation patterns in the marine paleozoic carbonate reservoirs in the world[D]. Beijing: China University of Petroleum(Beijing), 2016. | |
[3] | 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6): 54-65. |
ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54-65. | |
[4] | RAFIEI Y, MOTIE M. Improved reservoir characterization by employing hydraulic flow unit classification in one of iranian carbonate reservoirs[J]. Advances in Geo-Energy Research, 2019, 3(3): 277-286. |
[5] | CHEN X, LIU P L, ZHAO L Q, et al. Diverting fracturing stimulation technique using a novel temporary plugging agent with multiphase transition properties at different temperatures[C]// Paper SPE-212735-MS presented at the SPE Canadian Energy Technology Conference and Exhibition, Calgary, Alberta, Canada, March 2023. |
[6] | 王志伟, 张凯, 武群虎, 等. 基于井震裂缝识别敏感性参数模型的碳酸盐岩储层裂缝预测方法[J]. 煤田地质与勘探, 2023, 51(6): 163-174. |
WANG Zhiwei, ZHANG Kai, WU Qunhu, et al. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration, 2023, 51(6): 163-174. | |
[7] |
何海清, 范土芝, 郭绪杰, 等. 中国石油“十三五”油气勘探重大成果与“十四五”发展战略[J]. 中国石油勘探, 2021, 26(1): 17-30.
doi: 10.3969/j.issn.1672-7703.2021.01.002 |
HE Haiqing, FAN Tuzhi, GUO Xujie, et al. Major achievements in oil and gas exploration of PetroChina during the 13th Five-Year Plan period and its development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17-30.
doi: 10.3969/j.issn.1672-7703.2021.01.002 |
|
[8] |
蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五”油气勘探进展与“十四五”前景展望[J]. 中国石油勘探, 2021, 26(1): 31-42.
doi: 10.3969/j.issn.1672-7703.2021.01.003 |
CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31-42.
doi: 10.3969/j.issn.1672-7703.2021.01.003 |
|
[9] | HUANG Z Q, XING H C, ZHOU X, et al. Numerical study of vug effects on acid-rock reactive flow in carbonate reservoirs[J]. Advances in Geo-Energy Research, 2020, 4(4): 448-459. |
[10] | 李曙光, 王红娜, 徐博瑞, 等. 大宁-吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探, 2022, 50(3): 165-172. |
LI Shuguang, WANG Hongna, XU Borui, et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(3): 165-172. | |
[11] | CHEN X, ZHAO L Q, LIU P L, et al. Experimental study and field verification of fracturing technique using a thermo-responsive diverting agent[J]. Journal of Natural Gas Science and Engineering, 2021, 92: 103993. |
[12] | ZHAO L Q, CHEN X, ZOU H L, et al. A review of diverting agents for reservoir stimulation[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106734. |
[13] | DU J, GUO J H, ZHAO L Q, et al. Corrosion inhibition of N80 steel simulated in an oil field acidification environment[J]. International Journal of Electrochemical Science, 2018, 13(6): 5810-5823. |
[14] | 刘长松, 赵海峰, 陈帅, 等. 大宁-吉县区块深层煤层气井酸压工艺及现场试验[J]. 煤田地质与勘探, 2022, 50(9): 154-162. |
LIU Changsong, ZHAO Haifeng, CHEN Shuai, et al. Acid fracturing technology of deep CBM wells and its field test in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9): 154-162. | |
[15] | 赵立强, 高俞佳, 袁学芳, 等. 高温碳酸盐岩储层酸蚀裂缝导流能力研究[J]. 油气藏评价与开发, 2017, 7(1): 20-26. |
ZHAO Liqiang, GAO Yujia, YUAN Xuefang, et al. Research on flow conductivity of acid etched fracture of carbonate reservoir under high temperature[J]. Petroleum Reservoir Evaluation and Development, 2017, 7(1): 20-26. | |
[16] | ZHANG N L, CHEN X, LUO Z F, et al. Experimental study of fracture conductivity in dolomite reservoirs treated with different acid fracturing technologies[J]. Geoenergy Science and Engineering, 2023, 227(5): 211914. |
[17] | AL-MOMIN A, ZHU D, HILL A D. The Effects of Initial Condition of Fracture Surfaces, Acid Spending and Acid Type on Conductivity of Acid Fracture[C]// Paper OTC-24895-MS presented at the Offshore Technology Conference-Asia, Kuala Lumpur, Malaysia, March 2014. |
[18] | 牟建业, 张士诚. 酸压裂缝导流能力影响因素分析[J]. 油气地质与采收率, 2011, 18(2): 69-71. |
MOU Jianye, ZHANG Shicheng. Influence factor analysis on acid pressure rips diversion capacity[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 69-71. | |
[19] | 李小刚, 杨兆中, 张俊良, 等. 酸压裂缝导流能力研究回顾与展望[J]. 新疆石油地质, 2012, 33(2): 241-243. |
LI Xiaogang, YANG Zhaozhong, ZHANG Junliang, et al. Review and prospect of study on acid fracturing conductivity[J]. Xinjiang Petroleum Geology, 2012, 33(2): 241-243. | |
[20] | ALJAWAD M S, ALJULAIH H, MAHMOUD M, et al. Integration of field, laboratory, and modeling aspects of acid fracturing: A comprehensive review[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106158. |
[21] | 苟申延, 王世彬, 郭建春. 交替注入工艺对深层海相碳酸盐岩酸蚀裂缝导流能力的影响研究[J]. 钻采工艺, 2023, 46(2): 94-99. |
GOU Shenyan, WANG Shibin, GUO Jianchun. Influence of alternate injection process on conductivity of acid-etched fractures in deep marine carbonate rocks[J]. Drilling & Production Technology, 2023, 46(2): 94-99. | |
[22] | 李沁, 伊向艺, 卢渊, 等. 储层岩石矿物成分对酸蚀裂缝导流能力的影响[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 102-108. |
LI Qin, YI Xiangyi, LU Yuan, et al. Influence of reservoir mineralogical composition on acid fracture conductivity[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(2): 102-108. | |
[23] | 李年银, 赵立强, 张倩, 等. 酸压过程中酸蚀裂缝导流能力研究[J]. 钻采工艺, 2008, 31(6): 59-62. |
LI Nianyin, ZHAO Liqiang, ZHANG Qian, et al. Acid etched fracture conductivity study in acid fracturing[J]. Drilling & Production Technology, 2008, 31(6): 59-62. | |
[24] | 苟波, 马辉运, 刘壮, 等. 非均质碳酸盐岩油气藏酸压数值模拟研究进展与展望[J]. 天然气工业, 2019, 39(6): 87-98. |
GOU Bo, MA Huiyun, LIU Zhuang, et al. Research progress and prospect of numerical modeling for acid fracturing of heterogeneous carbonate reservoirs[J]. Natural Gas Industry, 2019, 39(6): 87-98. | |
[25] | 陈星宇, 杨兆中, 李小刚, 等. 酸蚀裂缝导流能力实验及预测模型研究综述[J]. 断块油气田, 2012, 19(5): 618-621. |
CHEN Xingyu, YANG Zhaozhong, LI Xiaogang, et al. Overview of study on experiment and predicting model of acid-etched fracture conductivity[J]. Fault-Block Oil & Gas Field, 2012, 19(5): 618-621. | |
[26] | 龚云蕾, 刘平礼, 罗志峰, 等. 酸压裂缝导流能力计算模型的研究现状[J]. 长江大学学报(自科版), 2013, 10(20): 129-132. |
GONG Yunlei, LIU Pingli, LUO Zhifeng, et al. Current situation of calculation models of acidic fracture conductivity[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(20): 129-132. | |
[27] | GOMAA A M, NASR-EL-DIN H A. Acid fracturing: The effect of formation strength on fracture conductivity[C]// Paper SPE-119623-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, January 2009. |
[28] | NASR-EL-DIN H A, AL-DRIWEESH S M, METCALF A S, et al. Fracture acidizing: What role does formation softening play in production response?[J]. SPE Production & Operations, 2008, 23(2): 184-191. |
[29] | NIERODE D E, KRUK K F. An evaluation of acid fluid loss additives retarded acids, and acidized fracture conductivity[C]// Paper SPE-4549-MS presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, Nevada, September 1973. |
[30] | ASADOLLAHPOUR E, BAGHBANAN A, HASHEMOLHOSSEINI H, et al. The etching and hydraulic conductivity of acidized rough fractures[J]. Journal of Petroleum Science and Engineering, 2018, 166: 704-717. |
[31] | AL-MUTAIRI S H, HILL A D, NASR-EL-DIN H A. Fracture conductivity using emulsified acids: Effects of emulsifier concentration and acid volume fraction[C]// Paper IPTC-12186-MS presented at the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, December 2008. |
[32] | 袁征, 黄杰, 袁文奎, 等. 压裂裂缝长期导流能力衰退规律实验研究[J]. 非常规油气, 2022, 9(3): 78-82. |
YUAN Zheng, HUANG Jie, YUAN Wenkui, et al. Experimental study on long term conductivity decline of hydraulic fracturing fracture[J]. Unconventional Oil & Gas, 2022, 9(3): 78-82. | |
[33] | 张启龙, 黄中伟, 谭强, 等. 疏松砂岩压裂充填裂缝扩展与参数优化研究[J]. 石油机械, 2023, 51(5): 67-75. |
ZHANG Qilong, HUANG Zhongwei, TAN Qiang, et al. Study on fracture propagation and parameter optimization of fracturing packing in unconsolidated sandstone reservoirs[J]. China Petroleum Machinery, 2023, 51(5): 67-75. | |
[34] | LU C, BAI X, LUO Y, et al. New study of etching patterns of acid-fracture surfaces and relevant conductivity[J]. Journal of Petroleum Science and Engineering, 2017, 159: 135-147. |
[35] | 白翔. 基于刻蚀形态数字化表征的酸蚀裂缝导流能力研究[D]. 成都: 西南石油大学, 2015. |
BAI Xiang. Research on the conductivity of acid etched fractures based on digital characterization of etching morphology[D]. Chengdu: Southwest Petroleum University, 2015. | |
[36] | DENG J Y, MOU J Y, HILL A D D, et al. A new correlation of acid-fracture conductivity subject to closure stress[J]. SPE Production & Operations, 2012, 27(2): 158-169. |
[37] | DENG J, HILL A D D, ZHU D. A theoretical study of acid-fracture conductivity under closure stress[J]. SPE Production & Operations, 2011, 26(1): 9-17. |
[38] | KAMALI A, POURNIK M. Fracture closure and conductivity decline modeling-Application in unpropped and acid etched fractures[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 44-55. |
[39] | 孔祥伟, 严仁田, 张思琦, 等. 真三轴大物模水力压裂裂缝起裂及扩展模拟实验[J]. 石油与天然气化工, 2023, 52(3): 97-102. |
KONG Xiangwei, YAN Rentian, ZHANG Siqi, et al. Simulation experiment of fracture initiation and propagation of hydraulic fracturing with true triaxial large physical model[J]. Chemical Engineering of Oil & Gas, 2023, 52(3): 97-102. | |
[40] | 杨钊, 孙锐, 梁飞, 等. 基于裂缝诱导应力场的套管应力影响因素分析[J]. 石油机械, 2023, 51(4): 135-143. |
YANG Zhao, SUN Rui, LIANG Fei, et al. Analysis on influential factors of casing stress based on fracture induced stress field[J]. China Petroleum Machinery, 2023, 51(4): 135-143. | |
[41] | 赵立强, 缪尉杰, 罗志锋, 等. 闭合酸蚀裂缝导流能力模拟研究[J]. 油气藏评价与开发, 2019, 9(2): 25-32. |
ZHAO Liqiang, MIU Weijie, LUO Zhifeng, et al. Simulation study on conductivity of closed acid cracks[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(2): 25-32. | |
[42] | JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of Rock Mechanics[M]. 4th ed. Malden, Massachusetts: Blackwell Publishing, 2007. |
[43] | MAUGIS D. Stresses and displacements around cracks and elliptical cavities: Exact solutions[J]. Engineering Fracture Mechanics, 1992, 43(2): 217-255. |
[44] | MYER L R. Fractures as collections of cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 231-243. |
[45] | XUE H, HUANG Z X, LIU F, et al. 3D acid fracturing simulation and application in the upper Sinian Dengying Fm gas reservoirs in China[C]// Paper IPTC-19137-MS presented at the International Petroleum Technology Conference, Beijing, China, March 2019. |
[1] | CHAI Nina, LI Jiarui, ZHANG Liwen, WANG Junjie, LIU Yapeng, ZHU Lun. Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 124-130. |
[2] | GAI Changcheng, LI Hongda, REN Lu, CAO Wei, HAO Jie. Comparative analysis of geothermal and reservoir numerical simulation methods [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 849-856. |
[3] | QU Changqing, LIN Qianguo. Atmospheric diffusion study of surface leakage from CO2 enhanced oil recovery with carbon capture and storage based on flux monitoring-CFD simulation [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 885-891. |
[4] | ZHENG Lingli, ZHU Bingqian, ZHANG Yuhao, LI Xiaobo, PENG Jiaming, XIAO Wenlian. Types and applicability of waterflooding characteristic curves in fractured-cavity carbonate reservoirs: A case study of Tahe Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 899-907. |
[5] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[6] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[7] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[8] | HU Wenge, MA Longjie, WANG Yan, BAO Dian, ZHANG Yun. Application and reflections on efficient development of deep oil and gas reservoirs in Tarim Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 519-528. |
[9] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[10] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
[11] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[12] | MA Daixin,REN Xianjun,ZHAO Mifu,HAN Jiaoyan,LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
[13] | ZHANG Wen,LIANG Lixi,LIU Xiangjun,XIONG Jian,ZHANG Yinan. Etching morphology and mechanical properties of carbonate rocks under acid action [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 247-255. |
[14] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[15] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
|