Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 638-646.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.014
• Field Application • Previous Articles Next Articles
GAI Changcheng(),ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng
Received:
2023-11-06
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Changcheng GAI,Zhongxin ZHAO,Lu REN, et al. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646.
Table 3
Key parameters of geothermal field model"
参数类型 | 参数名称 | 参数取值 |
---|---|---|
地层参数 | 储层埋深/m | 2 400 |
储层厚度/m | 200 | |
孔隙度/% | 31 | |
渗透率/(10-3 μm3) | 497 | |
地层压力/MPa | 24 | |
流体参数 | 水热容/[J/(m3·℃)] | 4.20×106 |
水相热传导率/[J/(m·d·℃)] | 5.34×104 | |
岩石参数 | 岩石热容[J/(m3·℃)] | 2.35×106 |
岩石热传导率/[J/(m·d·℃)] | 6.60×105 | |
边界条件 | 热储温度/℃ | 78 |
采水量/(m3/h) | 100 | |
回灌量/(m3/h) | 75 | |
回灌温度/℃ | 30 | |
采灌时间/a | 30 | |
模型参数 | 单网格水平长度/m | 10 |
单网格纵向长度/m | 10 | |
单网格厚度/m | 50 | |
网格数量/个 | 130×86×4 |
[1] | 李文, 孔祥军, 袁利娟, 等. 中国地热资源概况及开发利用建议[J]. 中国矿业, 2020, 29(增刊1): 22-26. |
LI Wen, KONG Xiangjun, YUAN Lijuan, et al. General situation and suggestions of development and utilization of geothermal resources in China[J]. China Mining Magazine, 2020, 29(suppl. 1): 22-26. | |
[2] | 刘国勇, 赵忠新, 任路, 等. 沉积盆地中深层水热型地热资源评价体系研究与应用[J]. 油气与新能源, 2022, 34(2): 38-47. |
LIU Guoyong, ZHAO Zhongxin, REN Lu, et al. Study and application of the evaluation system concerning the hydrothermal type geothermal resource at the middle and deep layers of sedimentary basin[J]. Petroleum and New Energy, 2022, 34(2): 38-47. | |
[3] | 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321. |
LIN Wenjing, LIU Zhiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321. | |
[4] | 张鑫. 地热水藏开发模拟和温度场变化规律研究[D]. 青岛: 中国石油大学(华东), 2020. |
ZHANG Xin. Simulation of geothermal water reservoir development and study of temperature field variation[D]. Qingdao: China University of Petroleum(East China), 2020. | |
[5] | 段忠丰, 李福来, 巩亮, 等. 基于水热耦合模拟的油气区地热开发井网布局[J]. 天然气工业, 2020, 40(10): 156-162. |
DUAN Zhongfeng, LI Fulai, GONG Liang, et al. Geo-thermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J]. Natural Gas Industry, 2020, 40(10): 156-162. | |
[6] | 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. |
QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 2023, 45(5): 891-903. | |
[7] | 党书生, 马致远, 郑磊. 咸阳地区地热采灌井最佳井距分析[J]. 地下水, 2016, 38(1): 56-58. |
DANG Shusheng, MA Zhiyuan, ZHENG Lei. An optimization of the distance between geothermal fluid[J]. Ground Water, 2016, 38(1): 56-58. | |
[8] | 陈明涛. 天津潘庄凸起构造区砂岩型热储层水-热-力学耦合数值模拟研究[D]. 长春: 吉林大学, 2020. |
CHEN Mingtao. Study on hydro-thermo-mechanical coupling numerical simulation of sandstone thermal reservoir in Panzhuang uplift area, Tianjin city[D]. Changchun: Jilin University, 2020. | |
[9] | 孙彭光. 大名地热田地质概念模型及井网模拟[J]. 长江大学学报(自然科学版), 2018, 15(13): 11-16. |
SUN Pengguang. Study on the conceptual model and development law of Guantao Formation in Daming geothermal field[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(13): 11-16. | |
[10] | 李洪达, 周宏, 赵鹏飞, 等. 集中式砂岩型热储地热资源开采井网优化与实践[J]. 钻探工程, 2023, 50(4): 149-154. |
LI Hongda, ZHOU Hong, ZHAO Pengfei, et al. Optimization and practice of well pattern for exploitation of geothermal resources in centralized sandstone thermal reservoir[J]. Drilling Engineering, 2023, 50(4): 149-154. | |
[11] | 赵鹏飞, 刘鹏, 冯学坤, 等. 曹妃甸新城地热供暖工程资源勘察报告[R]. 盘锦: 辽河油田水文地热有限公司, 2019. |
ZHAO Pengfei, LIU Peng, FENG Xuekun, et al. Resource exploration report for the Caofeidian New City geothermal heating project[R]. Panjin:Liaohe Oilfield Hydrogeology and Geothermal Co., Ltd., 2019. | |
[12] | 李洪达, 程健, 黄红祥, 等. 曹妃甸新城地热供暖项目独立后评价报告[R]. 唐山: 冀东油田研究院, 2022. |
LI Hongda, CHENG Jian, HUANG Hongxiang, et al. Post-implementation independent evaluation report of the Caofeidian New City geothermal heating project[R]. Tangshan: CNPC Jidong Oilfield Company Research Institute, 2022. | |
[13] |
董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3): 666-676.
doi: 10.11698/PED.2021.03.22 |
DONG Yuexia, HUANG Hongxiang, REN Lu, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China[J]. Petroleum Exploration and Development, 2021, 48(3): 666-676.
doi: 10.11698/PED.2021.03.22 |
|
[14] | 董月霞, 周海民, 夏文臣, 等. 南堡凹陷第三系层序地层研究与油气成藏的关系[J]. 石油与天然气地质, 2003, 24(1): 39-49. |
DONG Yuexia, ZHOU Haimin, XIA Wenchen, et al. Relationship between Tertiary sequence stratigraphy and oil reservoiring in Nanpu depression[J]. Oil & Gas Geology, 2003, 24(1): 39-49. | |
[15] | 梁宏斌, 钱铮, 辛守良, 等. 冀中坳陷地热资源评价及开发利用[J]. 中国石油勘探, 2010, 15(5): 63-69. |
LIANG Hongbin, QIAN Zheng, XIN Shouliang, et al. Assessment and development of geothermal resources in Jizhong Depression[J]. China Petroleum Exploration, 2010, 15(5): 63-69. | |
[16] | 汪洋, 邓晋福, 汪集旸, 等. 中国大陆热流分布特征及热-构造分区[J]. 中国科学院研究生院学报, 2001, 18(1): 51-58. |
WANG Yang, DENG Jinfu, WANG Jiyang, et al. Terrestrial heat flow pattern and thermo-tectonic domains in the continental area of China[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2001, 18(1): 51-58. | |
[17] |
邱楠生, 许威, 左银辉, 等. 渤海湾盆地中—新生代岩石圈热结构与热-流变学演化[J]. 地学前缘, 2017, 24(3): 13-26.
doi: 10.13745/j.esf.2017.03.002 |
QIU Nansheng, XU Wei, ZUO Yinhui, et al. Evolution of Meso-Cenozoic thermal structure and thermal-rheological structure of the lithosphere in the Bohai Basin, eastern North China Craton[J]. Earth Science Frontiers, 2017, 24(3): 13-26.
doi: 10.13745/j.esf.2017.03.002 |
|
[18] | 龚育龄. 中国东部渤海湾盆地热结构和热演化[D]. 南京: 南京大学, 2003. |
GONG Yuling. Thermal structure and thermal evolution of the Bohai Bay Basin in eastern China[D]. Nanjing: Nanjing University, 2003. | |
[19] | 单帅强, 何登发, 方成名, 等. 渤海湾盆地冀中坳陷高阳低凸起构造特征及成因机制[J]. 石油实验地质, 2022, 44(6): 989-996. |
SHAN Shuaiqiang, HE Dengfa, FANG Chengming, et al. Structural characteristics and genetic mechanism of Gaoyang low uplift in Jizhong Depression,Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 989-996. | |
[20] | 马宏源. 砂岩热储地热群井系统优化数值模拟研究[D]. 济南: 山东大学, 2022. |
MA Hongyuan. Numerical research of multi-well geothermal system optimization in sandstone geothermal reservoir[D]. Jinan: Shandong University, 2022. | |
[21] | 程万庆, 刘九龙, 陈海波. 地热采灌对井回灌温度场的模拟研究[J]. 世界地质, 2011, 30(3): 486-492. |
CHENG Wanqing, LIU Jiulong, CHEN Haibo. Simulation research on reinjection temperature field of geothermal doublet well[J]. World Geology, 2011, 30(3): 486-492. | |
[22] | 王磊. 中深层砂岩热储回灌井参数优化模拟[J]. 科学技术与工程, 2023, 23(5): 1823-1832. |
WANG Lei. Simulation on parameters optimization of middle deep sandstone heat storage and recharge wells[J]. Science Technology and Engineering, 2023, 23(5): 1823-1832. | |
[23] | 宋美钰, 刘杰, 于彦, 等. 天津地区雾迷山组热储数值模拟研究[J]. 地质调查与研究, 2018, 41(4): 306-311. |
SONG Meiyu, LIU Jie, YU Yan, et al. Numerical simulation of Wumishan Formation thermal reservoir in Tianjin area[J]. Geological Survey and Research, 2018, 41(4): 306-311. | |
[24] | 梁卫卫, 党海龙, 刘滨, 等. 特低渗透油藏注水诱导动态裂缝实验及数值模拟[J]. 石油实验地质, 2023, 45(3): 566-575. |
LIANG Weiwei, DANG Hailong, LIU Bin, et al. Experiment and numerical simulation of water injection induced dynamic fractures in ultra-low permeability reservoirs[J]. Petroleum Geology & Experiment, 2023, 45(3): 566-575. | |
[25] | 李晓宁. 流体交换型地热井采灌能力研究[D]. 青岛: 中国石油大学(华东), 2017. |
LI Xiaoning. Study on the recovery and recharge ability of wells in geothermal fluid exchange development[D]. Qingdao: China University of Petroleum(East China), 2017. | |
[26] | KAYA E, ZARROUK S J, O'SULLIVAN M J. Reinjection in geothermal fields: A review of worldwide experience[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 47-68. |
[27] | 朱家玲, 朱晓明, 雷海燕. 地热回灌井间压差补偿对回灌效率影响的分析[J]. 太阳能学报, 2012, 33(1): 56-62. |
ZHU Jialing, ZHU Xiaoming, LEI Haiyan. Analysis of impact of pressure compensation between geothermal wells on reinjection efficiency[J]. Acta Energiae Solaris Sinica, 2012, 33(1): 56-62. | |
[28] | 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺, 2021, 43(2): 203-211. |
CAO Qian, FANG Chaohe, LI Yun, et al. Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43 (2): 203-211. | |
[29] | 刘邹炜. 废弃五点井网开发地热能数值模拟研究[D]. 武汉: 长江大学, 2023. |
LIU Zouwei. Numerical simulation on exploiting geothermal energy from an abandoned five-spot well pattern[D]. Wuhan: Yangtze University, 2023. | |
[30] | 张红波. 地热资源可循环利用井网模式评价方法——以东营凹陷中央隆起带地热田为例[J]. 油气地质与采收率, 2017, 24(1): 86-91. |
ZHANG Hongbo. A well pattern evaluation method for geothermal resource recycling: A case study of geothermal field in the central uplift belt of Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 86-91. | |
[31] | 李乔丹. 基于地面地下综合优化地热能开采井网研究[D]. 西安: 西安石油大学, 2020. |
LI Qiaodan. Study on comprehensive optimization of geothermal energy production pattern based on surface and underground[D]. Xi'an: Xi'an Shiyou University, 2020. | |
[32] | 徐玉良. 齐河地区地下水源热泵抽灌井布置及地热开采效应研究[D]. 济南: 山东大学, 2019. |
XU Yuliang. Research on the arrangement of pumping and recharging wells of groundwater heat pump and the effect of geothermal resource mining in Qihe[D]. Jinan: Shandong University, 2019. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[3] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[4] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[5] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[6] | MA Daixin,REN Xianjun,ZHAO Mifu,HAN Jiaoyan,LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
[7] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[8] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
[9] | HE Haiyan, LIU Xianshan, GENG Shaoyang, SUN Junchang, SUN Yanchun, JIA Qian. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. |
[10] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[11] | YANG Bing, FU Qiang, GUAN Jingtao, LI Linxiang, PAN Haoyu, SONG Hongbin, QIN Tingting, ZHU Zhiwei. Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 519-524. |
[12] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[13] | HOU Mengru,LIANG Bing,SUN Weiji,LIU Qi,ZHAO Hang. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107. |
[14] | LIU Yexuan,LIU Xiangjun,DING Yi,ZHOU Xin,LIANG Lixi. Evaluation method of fracability of shale oil reservoir considering influence of interlayer [J]. Reservoir Evaluation and Development, 2023, 13(1): 74-82. |
[15] | HE Feng,FENG Qiang,CUI Yushi. Production schedule optimization of gas wells in W shale gas reservoir under controlled pressure difference based on numerical simulation [J]. Reservoir Evaluation and Development, 2023, 13(1): 91-99. |
|