Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 629-637.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.013
• Field Application • Previous Articles Next Articles
LI Xuebin1(),JIN Lixin1,CHEN Chaofeng1,YU Tianxi2,XIANG Yingjie1,YI Duo3
Received:
2023-10-11
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Xuebin LI,Lixin JIN,Chaofeng CHEN, et al. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637.
Table 1
Fracturing operation data of Well-C3154 and Well-C3163 in Jurassic Xishanyao Formation of Baijiahai area, Junggar Basin"
井名 | 井段/ m | 射孔 位置 | 压裂液 类型 | 施工排量/ (m3/min) | 压裂液量/m3 | 加砂量/ m3 | 施工压力/ MPa | 停泵压力/ MPa | 日产气/ m3 |
---|---|---|---|---|---|---|---|---|---|
C3154井 | 2 422~2 434 | 夹矸层 | 胍胶 | 3~4 | 551.7 | 40.0 | 36~50 | 22.0 | 0 |
C3163井 | 2 431~2 435 | 下煤岩层 | 胍胶 | 3~4 | 387.2 | 23.2 | 20~58 | 41.2 | 800 |
Table 2
Fracturing effect data of Jurassic Xishanyao Formation coal reservoir in Baijiahai area, Junggar Basin"
井号 | 井段/m | 煤层 厚度/m | 压裂工艺 | 压裂液 类型 | 压裂 液量/m3 | 设计 加砂量/m3 | 现场 加砂量/m3 | 施工排量/ m3/min | 日产气/ m3 | 试产 时间/d | 压裂 时间 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
彩504井 | 2 567~2 583 | 16 | 油管压裂 | 胍胶液 | 171.4 | 30 | 14.5 | 3.5 | 7 200~2 100 | 120 | 2005年 | 施工压力爬升, 未完成加砂 |
彩512井 | 2 614~2 619 | 5 | 套管压裂 | 活性水+ 清洁压裂液 | 551.0 | 35 | 35.0 | 8.0~10.0 | 1 540~0 | 18 | 2013年 | 产气10 d后停喷 |
彩514井 | 2 516~2 521 | 5 | 油管压裂 | 胍胶液 | 440.0 | 40 | 40.0 | 4.0~5.5 | 2 300~2 080 | 78 | 2018年 | 施工压力爬升, 完成加砂 |
C3163井 | 2 431~2 435 | 4 | 油管压裂 | 胍胶液 | 387.2 | 40 | 23.2 | 2.0~4.0 | 800 | 17 | 2020年 | 施工压力爬升, 未完成加砂 |
[1] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
[2] | 徐凤银. 深部煤层气助力产业发展进入新阶段[J]. 石油知识, 2023(4): 4-6. |
XU Fengyin. The development of deep coalbed methane is entering a new stage, boosting the industry[J]. Petroleum Knowledge, 2023(4): 4-6. | |
[3] | 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9(4): 1-8. |
ZHANG Yi, ZHU Guanghui, ZHENG Qiugen, et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 2022, 9(4): 1-8. | |
[4] | 蒋雪梅, 李晓红, 孙晓艳, 等. ISO天然气分析标准对煤层气分析的适应性研讨[J]. 石油与天然气化工, 2022, 51(2): 103-109. |
JIANG Xuemei, LI Xiaohong, SUN Xiaoyan, et al. Study on applicability of ISO natural gas analysis standards applied in coalbed methane analysis[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 103-109. | |
[5] | 李国永, 姚艳斌, 王辉, 等. 鄂尔多斯盆地神木-佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 70-80. |
LI Guoyong, YAO Yanbin, WANG Hui, et al. Deep coalbed methane resources in the Shenmu-Jiaxian block, Ordos Basin, China: Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 70-80. | |
[6] | 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91. |
GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 81-91. | |
[7] | 胡秋嘉, 李梦溪, 贾慧敏, 等. 沁水盆地南部高煤阶煤层气水平井地质适应性探讨[J]. 煤炭学报, 2019, 44(4): 1178-1187. |
HU Qiujia, LI Mengxi, JIA Huimin, et al. Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui Basin[J]. Journal of China Coal Society, 2019, 44(4): 1178-1187. | |
[8] | 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探, 2022, 50(3): 30-41. |
YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3): 30-41. | |
[9] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. | |
[10] | 曾雯婷, 徐凤银, 张雷, 等. 鄂尔多斯盆地东缘深部煤层气排采工艺技术进展与启示[J]. 煤田地质与勘探, 2024, 52(2): 23-32. |
ZENG Wenting, XU Fengyin, ZHANG Lei, et al. Deep coalbed methane production technology for the eastern margin of the Ordos Basin: Advances and their implications[J]. Coal Geology & Exploration, 2024, 52(2): 23-32. | |
[11] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
|
[12] |
郭绪杰, 支东明, 毛新军, 等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
GUO Xujie, ZHI Dongming, MAO Xinjun, et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
|
[13] | 叶建平, 侯淞译, 张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探, 2022, 50(3): 15-22. |
YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3): 15-22. | |
[14] | 倪方杰. 白家海凸起深层煤层气压裂试气实践与认识[J]. 江汉石油职工大学学报, 2019, 32(5): 36-38. |
NI Fangjie. Practice and understanding of deep CBM fracturing gas testing in Baijiahai uplift[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(5): 36-38. | |
[15] | 聂志宏, 徐凤银, 时小松, 等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探, 2024, 52(2): 1-12. |
NIE Zhihong, XU Fengyin, SHI Xiaosong, et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 1-12. | |
[16] | 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415. | |
[17] | 苏育飞, 宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质, 2023, 35(5): 46-57. |
SU Yufei, SONG Ru. Study on geological characteristics of deep CBM in Yushewu block, Qinshui Basin and evaluation of transformability[J]. Coal Geology of China, 2023, 35(5): 46-57. | |
[18] | 李五忠, 孙斌, 孙钦平, 等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报, 2016, 41(1): 67-71. |
LI Wuzhong, SUN Bin, SUN Qinping, et al. Analysis on coal-bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society, 2016, 41(1): 67-71. | |
[19] |
徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682.
doi: 10.11698/PED.20220856 |
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682.
doi: 10.11698/PED.20220856 |
|
[20] |
刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策——以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839.
doi: 10.7623/syxb202311006 |
LIU Jianzhong, Zhu Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839.
doi: 10.7623/syxb202311006 |
|
[21] | 易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(增刊2): 706-716. |
YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(suppl. 2): 706-716. | |
[22] | ZHOU S, ZHUANG X, RABCZUK T. Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102523. |
[23] | ZHOU S, ZHUANG X, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240: 189-203. |
[24] |
赵金洲, 彭瑀, 林啸, 等. 考虑复杂应力分布的数值缝宽计算模型及其应用[J]. 石油学报, 2016, 37(7): 914-920.
doi: 10.7623/syxb201607010 |
ZHAO Jinzhou, PENG Yan, LIN Xiao, et al. Numerical fracture width model considering complex stress distribution and its application[J]. Acta Petrolei Sinica, 2016, 37(7): 914-920.
doi: 10.7623/syxb201607010 |
|
[25] | 罗伟疆, 宁崇如, 黄凯. 煤层气压裂液研究现状及其展望[J]. 中国煤层气, 2023, 20(3): 30-35. |
LUO Weijiang, NING Chongru, HUANG Kai. Current situation and prospect of research on coalbed methane fracturing fluid[J]. China Coalbed Methane, 2023, 20(3): 30-35. | |
[26] | 张亚东, 吴文刚, 敬显武, 等. 适用于致密气藏的可变黏压裂液体系性能评价及现场应用[J]. 石油与天然气化工, 2022, 51(1): 73-77. |
ZHANG Yadong, WU Wengang, JING Xianwu, et al. Performance evaluation and field application of variable viscosity fracturing fluid system for tight gas reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 73-77. | |
[27] | 向超, 陈力力, 徐莹莹, 等. 一种新型压裂液纳米助排剂的研制及性能评价[J]. 石油与天然气化工, 2022, 51(3): 71-75. |
XIANG Chao, CHEN Lili, XU Yingying, et al. Development and performance evaluation of a new nano-drainage aid for fracturing fluid[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 71-75. | |
[28] | 陈天, 易远元, 李甜甜, 等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工, 2023, 43(9): 6-10. |
CHEN Tian, YI Yuanyuan, LI Tiantian, et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry, 2023, 43(9): 6-10. | |
[29] | 刘剑辉. 吐哈油田煤层气压裂新技术探索及应用[J]. 西部探矿工程, 2018, 30(3): 28-31. |
LIU Jianhui. Exploration and application of new fracturing technologies in Tuha Oilfield's coalbed methane[J]. West-China Exploration Engineering, 2018, 30(3): 28-31. | |
[30] | 李小刚, 舒鸫锟, 张平, 等. 煤层压裂缝内支撑剂输送物理模拟研究[J]. 油气藏评价与开发, 2020, 10(4): 39-44. |
LI Xiaogang, SHU Dongkun, ZHANG Ping, et al. Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4): 39-44. | |
[31] | 徐宝恒, 郭大立. 大规模缝网压裂在深部煤层气中的应用[J]. 河南科技, 2023, 42(19): 81-84. |
XU Baoheng, GUO Dali. Application of large-scale fracture network fracturing in deep coalbed methane[J]. Henan Science and Technology, 2023, 42(19): 81-84. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[3] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[4] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[5] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[6] | ZHANG Jiawei, LIU Xiangjun, XIONG Jian, LIANG Lixi, REN Jianfei, LIU Baiqu. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667. |
[7] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
[8] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[9] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[10] | CHEN Meng,XIE Weifeng,ZHANG Yu,YANG Guofeng,LIU Xiangjun. Methods and application for water holdup calculation and flowing image based on array electromagnetic wave instrument in horizontal water-oil wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 505-512. |
[11] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[12] | YAO Hongsheng,YUN Lu,ZAN Ling,ZHANG Longsheng,QIU Weisheng. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 141-151. |
[13] | ZHANG Jinhong. Progress in Sinopec shale oil engineering technology [J]. Reservoir Evaluation and Development, 2023, 13(1): 1-8. |
[14] | HOU Mengru,LIANG Bing,SUN Weiji,LIU Qi,ZHAO Hang. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107. |
[15] | WANG Xiaoqiang,ZHAO Li’an,WANG Zhiyuan,XIU Chunhong,JIA Guolong,DONG Yan,LU Detang. Data analysis method of pump shutdown pressure based on water hammer effect and cepstrum transformation [J]. Reservoir Evaluation and Development, 2023, 13(1): 108-116. |
|