Reservoir Evaluation and Development ›› 2020, Vol. 10 ›› Issue (1): 9-16.doi: 10.13809/j.cnki.cn32-1825/te.2020.01.002
• Geomechanics of Shale Gas • Previous Articles Next Articles
YUAN Yusong1,FANG Zhixiong2,HE Xipeng2,LI Shuangjian1,PENG Yongmin1,LONG shengxiang1
Received:
2019-07-31
Online:
2020-02-26
Published:
2020-02-04
CLC Number:
YUAN Yusong,FANG Zhixiong,HE Xipeng,LI Shuangjian,PENG Yongmin,LONG shengxiang. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J].Reservoir Evaluation and Development, 2020, 10(1): 9-16.
Table 1
OCR and formation pressure values for Longmaxi shale of representative exploration wells in Pengshui and its adjacent areas"
井名 | 现今 埋深/m | 最大古埋深/m | OCR | 志留系 压力系数实测值 | 志留系 压力系数预测值 | 误差 |
---|---|---|---|---|---|---|
PY1 | 2 153 | 6 243 | 2.70 | 0.96 | 1.05 | 0.09 |
HY1 | 2 162 | 6 461 | 3.00 | 1.01 | 0.99 | 0.02 |
PY3 | 3 021 | 6 216 | 2.10 | 1.05 | 1.21 | 0.16 |
DY1 | 2 050 | 5 045 | 2.50 | 1.15 | 1.10 | 0.05 |
LY1 | 2 832 | 5 831 | 2.10 | 1.20 | 1.21 | 0.01 |
SY1 | 3 467 | 5 462 | 1.57 | 1.30 | 1.43 | 0.13 |
NY1 | 4 405 | 5 700 | 1.29 | 1.40 | 1.59 | 0.19 |
JY1 | 2 409 | 5 708 | 2.20 | 1.45 | 1.18 | 0.27 |
JS1 | 4 985 | 6 904 | 1.40 | 1.67 | 1.52 | 0.15 |
DY2 | 4 359 | 6 354 | 1.27 | 1.78 | 1.61 | 0.17 |
Table 3
Comparison of permeability before and after artificial cracks in shale"
岩样编号 | 长度/cm | 直径/cm | 温度/ ℃ | 气体黏度/(mPa·s) | 造缝前 渗透率/10-3μm2 | 造缝后 渗透率/10-3μm2 |
---|---|---|---|---|---|---|
泥-1 | 3.933 | 2.487 | 12 | 0.017 78 | 0.002 769 | 19.503 |
泥-2 | 3.239 | 2.490 | 12 | 0.017 78 | 0.003 701 | 33.433 |
泥-3 | 3.284 | 2.502 | 12 | 0.017 78 | 0.003 466 | 18.176 |
泥-4 | 2.544 | 2.493 | 12 | 0.017 78 | 0.003 687 | 23.588 |
Table 4
Variation of artificial fracture permeability of shale with confining pressures"
泥-1 | 泥-2 | 泥-3 | 泥-4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | |||
1.00 | 19.503 000 | 1.0 | 33.433 00 | 1.0 | 18.176 000 | 1.0 | 23.588 000 | |||
3.20 | 9.889 109 | 9.05 | 5.639 825 | 5.4 | 7.249 812 | 10.1 | 12.915 430 | |||
5.15 | 4.742 773 | 11.5 | 3.237 930 | 8.35 | 2.961 592 | 12.2 | 9.766 560 | |||
7.15 | 3.837 527 | 14.0 | 1.447 781 | 11.2 | 1.574 693 | 15.2 | 6.350 846 | |||
10.25 | 2.090 685 | 19.9 | 0.443 591 | 15.2 | 0.785 671 | 20.6 | 2.338 490 | |||
15.40 | 0.832 936 | 25.2 | 0.220 236 | 20.1 | 0.395 021 | 25.5 | 1.168 620 | |||
24.98 | 0.248 925 | 29.9 | 0.130 036 | 25.2 | 0.238 413 | 30.4 | 0.646 946 | |||
34.70 | 0.093 078 | 39.4 | 0.056 493 | 29.9 | 0.153 105 | 38.9 | 0.263 671 | |||
44.00 | 0.042 680 | 49.8 | 0.026 599 | 39.4 | 0.068 022 | 50.0 | 0.108 952 | |||
59.50 | 0.016 512 | 58.0 | 0.016 027 | 50.2 | 0.032 018 | 60.0 | 0.056 485 | |||
59.6 | 0.021 513 |
Table 5
Triaxial compression test data of shale samples from Silurian Longmaxi formation in Pengshui area"
地层 层位 | 样品编号 | 轴向应力/MPa | 围压/MPa | 温度/℃ | 峰值强度/MPa | 弹性模量/GPa | 泊松比 | 内聚力C/MPa | 内摩擦角Φ/(°) |
---|---|---|---|---|---|---|---|---|---|
龙马 溪组 | 1142-3 | 40.25 | 1.92 | 17 | 38.33 | 3.54 | 0.11 | 11.0 | 30.0 |
1142-38 | 61.01 | 7.65 | 25 | 53.36 | 3.48 | 0.12 | |||
1142-15 | 93.32 | 15.49 | 35 | 77.83 | 5.03 | 0.20 | |||
1142-21 | 126.35 | 31.06 | 55 | 95.29 | 6.09 | 0.22 | |||
1142-46 | 147.08 | 48.16 | 75 | 98.92 | 5.33 | 0.29 |
[1] | 何希鹏, 高玉巧, 唐显春 , 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017,28(4):654-664. |
HE X P, GAO Y Q, TANG X C , et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017,28(4):654-664. | |
[2] | 董大忠, 王玉满, 李新景 , 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016,36(1):19-32. |
DONG D Z, WANG Y M, LI X J , et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016,36(1):19-32. | |
[3] | 聂海宽, 汪虎, 何治亮 , 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019,40(2):131-143. |
NIE H K, WANG H, HE Z L , et al. Famation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng-Longmaxi Famation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019,40(2):131-143. | |
[4] | 李双建, 袁玉松, 孙炜 , 等. 四川盆地志留系页岩气超压形成与破坏机理及主控因素[J]. 天然气地球科学, 2016,27(5):924-931. |
LI S J, YUAN Y S, SUN W , et al. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin[J]. Natural Gas Geoscience, 2016,27(5):924-931. | |
[5] | 方志雄, 何希鹏 . 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016,37(6):819-827. |
FANG Z X, HE X P . Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline, Southeast Chongqing, China[J]. Oil & Gas Geology, 2016,37(6):819-827. | |
[6] | NYGARD R, GUTIERREZ M, BRATLI R K , et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006,23(2):201-212. |
[7] | YUAN Y S, JIN Z J, ZHOU Y , et al. Burial depth interval of the shale brittle-ductile transition zone and its implications in shale gas exploration and production[J]. Petroleum Science, 2017,14(5):637-647. |
[8] | 李士祥, 施泽进, 刘显阳 , 等. 鄂尔多斯盆地中生界异常低压成因定量分析[J]. 石油勘探与开发, 2013,40(5):528-533. |
LI S X, SHI Z J, LIU X Y , et al. Quantitative analysis of the Mesozoic abnormal low pressure in Ordos Basin[J]. Petroleum Exploration and Development, 2013,40(5):528-533. | |
[9] | SWARBRICK R E, OSBORNE M J . Mechanisms that generate abnormal pressures: An overview[J]. AAPG Memoir, 1998,70:13-34. |
[10] | 王瑀辉, 袁玉松 . 含烃盐水包裹体PVTsim模拟的一种简化方法及应用[J]. 石油地质与工程, 2018,32(5):40-43. |
WANG Y H, YUAN Y S . Hydrocarbon brine inclusions PVTsim simulation: A simplified method and application[J]. Petroleum Geology and Engineering, 2018,32(5):40-43. | |
[11] | 米敬奎, 杨孟达, 刘新华 . 利用PVTsim计算鄂尔多斯盆地上古生界砂岩储层中包裹体的捕获压力[J]. 湘潭矿业学院学报, 2002,17(3):22-26. |
MI J K, YANG M D, LIU X H . Calculation to trapping pressure of inclusions occurring in upperpaleozoic sandstone reservoir from the Ordos basin using PVTsim method[J]. Journal of Xiangtan Mining Institute, 2002,17(3):22-26. | |
[12] | RICKMAN R, MULLEN M J, PETRE J E. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]// paper SPE-115258-MS presented at the SPE Annual Technical Conference and Exhibition, 21-24 September 2008, Denver, Colorado, USA. |
[13] | LABANI M M, REZAEE R . The importance of geochemical parameters and shale composition on rock mechanical properties of gas shale reservoirs: a case study from the Kockatea Shale and Carynginia Formation from the Perth Basin, Western Australia[J]. Rock Mechanics and Rock Engineering, 2015,48(3):1249-1257. |
[14] | WANG F P, GALE J F . Screening criteria for shale-gas systems[J]. Gulf Coast Assoc Geol Soc Trans, 2009,59:779-793. |
[15] | 邹才能, 董大忠, 王社教 , 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653. |
ZOU C N, DONG D Z, WANG S J , et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010,37(6):641-653. | |
[16] | 聂海宽, 包书景, 高波 , 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012,19(3):280-294. |
NIE H K, BAO S J, GAO BO , et al. A study of shale gas preservation condition for the Lower Paleozoic in Sichuan Basin and its pheriphery[J]. Earth Science Frontiers, 2012,19(3):280-294. | |
[17] | 李双建, 周雁, 孙冬胜 . 评价盖层有效性的岩石力学实验研究[J]. 石油实验地质, 2013,35(5):574-578. |
LI S J, ZHOU Y, SUN D S . Rock mechanic experiment study of evaluation on cap rock effectiveness[J]. Petroleum Geology & Experiment, 2013,35(5):574-578. | |
[18] | BABANOURI N, NASAB S K, BAGHBANAN A , et al. Overconsolidation effect on shear behavior of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2011,48(8):1283-1291. |
[19] | NYGÅRD R, GUTIERREZ M, BRATLI R K , et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006,23(2):201-212. |
[20] | MARK R P T, RICHARD R H, RICHARD E S , et al. Origin of overpressure and pore- pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009,93(1):51-74. |
[21] | 朱贺, 汪佳, 施坤 , 等. 泥岩裂缝性储层应力敏感性实验研究[J]. 科学技术与工程, 2011,11(35):8862-8864. |
ZHU H, WANG J, SHI K , et al. Experimental study on pressures sensibility of fractured shale reservoir[J]. Science Technology and Engineering, 2011,11(35):8862-8864. | |
[22] | 解习农, 刘晓峰, 胡祥云 , 等. 超压盆地中泥岩的流体压裂与幕式排烃作用[J]. 地质科技情报, 1998,17(4):59-64. |
JIE X N, LIU X F, HU X Y , et al. Hydrofracturing and associated episodic hydrocarbon expulsion of mudstones in overpressured basin[J]. Geological Science and Technology Information, 1998,17(4):59-64 | |
[23] | 郝芳, 董伟良 . 沉积盆地超压系统演化、流体流动与成藏机理[J]. 地球科学进展, 2001,16(1):79-85. |
HAO F, DONG W L . Evolution of, fluid flow and petroleum accumulation in overpressured systems in sedimentary basins[J]. Advance In Earth Sciences, 2001,16(1):79-85 | |
[24] | HARWOOD R J . Oil and Gas Generation by Laboratory Pyrolysis of Kerogen[J]. AAPG, 1977,61(12):2082-2102. |
[25] | 席斌斌, 腾格尔, 俞凌杰 , 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016,38(4):473-479. |
XI B B, TENG G E, YU L J , et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(4):473-479. | |
[26] | 高键, 何生, 易积正 . 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J]. 石油与天然气地质, 2015,36(3):472-480. |
GAO J, HE S, YI J Z . Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015,36(3):472-480. |
[1] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[2] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[3] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[4] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[5] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[6] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[7] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[8] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[9] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[10] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[11] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[12] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
[13] | ZHANG Longsheng,WANG Weiheng. Study and application of a high temperature foaming agent in anionic-nonionic system namely HDHP: A case study of shale gas wells in Dongsheng Block, Sichuan Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 240-246. |
[14] | ZHAO Renwen,XIAO Dianshi,LU Shuangfang,ZHOU Nengwu. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example [J]. Reservoir Evaluation and Development, 2023, 13(1): 52-63. |
[15] | LI Ying,LI Maomao,LI Haitao,YU Hao,ZHANG Qihui,LUO Hongwen. Physicochemical mechanism of water phase imbibition in shale reservoirs [J]. Reservoir Evaluation and Development, 2023, 13(1): 64-73. |
|