Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 636-646.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.011
• Shale Gas • Previous Articles Next Articles
HOU Dali1,2,3(),HAN Xin2,5,TANG Hongming1,GUO Jianchun4,GONG Fengming2,SUN Lei4,QIANG Xianyu2
Received:
2022-08-10
Online:
2023-10-26
Published:
2023-11-01
CLC Number:
HOU Dali, HAN Xin, TANG Hongming, GUO Jianchun, GONG Fengming, SUN Lei, QIANG Xianyu. Primary research on expression of kerogen in Longmaxi Shale and its adsorption characteristics[J].Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646.
Table 3
Existing forms and relative contents of C, F, N and S elements in the shale of Longmaxi Formation in Changning"
元素 | 归属 | 结合能/eV | 面积分数/% |
---|---|---|---|
C1s | C—C,C—H | 284.6 | 55.90 |
C—O,C—OH | 285.4 | 20.40 | |
C=O | 287.1 | 6.60 | |
O—C=O | 288.5 | 17.10 | |
F1s | F- | 684.4 | 100.00 |
N1s | 吡啶 | 398.8 | 6.50 |
吡咯 | 400.2 | 64.60 | |
季氮 | 401.7 | 24.50 | |
氮氧化物 | 403.0 | 2.30 | |
S2p | 噻吩型硫 | 162.4 | 30.16 |
亚砜型硫 | 165.4 | 33.47 | |
砜型硫 | 168.6 | 36.37 |
[1] | 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. |
ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. | |
[2] | 刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814. |
LIU Weixin, LU Longfei, YE Deliao, et al. Significance and Formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814. | |
[3] | 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34-44. |
HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-Longmaxi Formation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34-44. | |
[4] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
[5] | LIU Y, LIU S M, ZHANG R, et al. The molecular model of Marcellus shale kerogen: Experimental characterization and structure reconstruction[J]. International Journal of Coal Geology, 2021, 246: 1-18. |
[6] | 王擎, 程枫, 潘朔. 油页岩干酪根化学键浓度与能量密度研究[J]. 燃料化学学报, 2017, 45(10): 1209-1218. |
WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1209-1218. | |
[7] | 黄亮. 基于分子模拟的页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学(北京), 2020. |
HUANG Liang. Molecular simulation study on competitive adsorption mechanism of multi-components in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020. | |
[8] | WANG X Y, HAN X X, YOU Y L, et al. Molecular characterization of Dachengzi oil shale kerogen by multidimensional solid-state nuclear magnetic resonance spectroscopy[J]. Fuel, 2021, 303(6): 1-9. |
[9] |
CHAREONSUPPANIMIT P, MOHAMMAD S A, ROBINSON R L, et al. High-pressure adsorption of gases on shales: Measurements and modeling[J]. International Journal of Coal Geology, 2012, 95: 34-46.
doi: 10.1016/j.coal.2012.02.005 |
[10] | 闫建萍, 张同伟, 李艳芳, 等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5): 805-811. |
YAN Jianping, ZHANG Tongwei, LI Yanfang, et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811. | |
[11] | RAJPUT V, ERTEKIN T. Thermodynamically-consistent modeling of adsorption in liquid-rich shales[C]// Paper SPE-169589-MS presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, Colorado, USA, April 2014. |
[12] | 翟常博, 邓模, 曹清古, 等. 川东地区上二叠统龙潭组泥页岩基本特征及页岩气勘探潜力[J]. 石油实验地质, 2021, 43(6): 921-932. |
ZHAI Changbo, DENG Mo, CAO Qinggu, et al. Basic characteristics and exploration potential of shale gas in Longtan Formation of Upper Permian in eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 921-932. | |
[13] | 李腾飞, 田辉, 肖贤明, 等. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284. |
LI Tengfei, TIAN Hui, XIAO Xianming, et al. The effect of particle size on low pressure gas adsorption experiments for high-maturity shale[J]. Natural Gas Geoscience, 2020, 31(9): 1271-1284. | |
[14] | CHEN L, LIU K Y, JIANG S, et al. Effect of adsorbed phase density on the correction of methane excess adsorption to absolute adsorption in shale[J]. Chemical Engineering Journal, 2020, 420: 1-13. |
[15] |
KATTI D, THAPA K, KATTI K S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models[J]. Fuel, 2017, 199: 641-652.
doi: 10.1016/j.fuel.2017.03.021 |
[16] |
许晨曦, 薛海涛, 李波宏, 等. 页岩气在矿物孔隙中的微观吸附机理差异性研究[J]. 特种油气藏, 2020, 27(4): 79-84.
doi: 10.3969/j.issn.1006-6535.2020.04.012 |
XU Chenxi, XUE Haitao, LI Bohong, et al. Microscopic adsorption mechanism difference in the mineral pore of shale gas reservoir[J]. Special Oil & Gas Reservoir, 2020, 27(4): 79-84.
doi: 10.3969/j.issn.1006-6535.2020.04.012 |
|
[17] |
任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375.
doi: 10.7623/syxb202011006 |
REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375.
doi: 10.7623/syxb202011006 |
|
[18] | BABATUNDE K A, BEGASH B, MOJID M R, et al. Molecular simulation study of CO2/CH4 adsorption on realistic heterogeneous shale surfaces[J]. Applied Surface Science, 2021, 543(3): 1-11. |
[19] | 石钰, 杨晓娜, 李树刚, 等. 含水量对干酪根中多组分气体吸附和扩散的影响: 分子模拟研究[J]. 西安石油大学学报(自然科学版), 2021, 36(4): 50-57. |
SHI Yu, YANG Xiaona, LI Shugang, et al. Effect of moisture on adsorption and diffusion of multi-component gas in kerogen: A molecular simulation study[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2021, 36(4): 50-57. | |
[20] | 石油地质勘探专业标准化委员会. 沉积岩中干酪根分离方法: GB/T 19144—2010[S]. 北京: 中国标准出版社, 2010: 1-3. |
Professional Standardization Committee of Petroleum Geology Exploration. Isolation method for kerogen from sedimentary rock: GB/T 19144—2010[S]. Beijing: Standards Press of China, 2010: 1-3. | |
[21] | 国家能源局. 透射光—荧光干酪根显微组分鉴定及类型划分方法: SY/T 5125-2014[S]. 北京: 石油工业出版社, 2014. |
National Energy Administration.Method of identification microscopically the maceral of kerogen and indivision the kerogen type by transmitted-light and fluorescence: SY/T 5125—2014[S]. Beijing: Petroleum Industry Press, 2014. | |
[22] |
JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79.
doi: 10.1016/0166-5162(89)90113-4 |
[23] | 谢国梁, 刘树根, 焦堃, 等. 受显微组分控制的深层页岩有机质孔隙: 四川盆地五峰组—龙马溪组有机质组分分类及其孔隙结构特征[J]. 天然气工业, 2021, 41(9): 23-34. |
XIE Guoliang, LIU Shugen, JIAO Kun, et al. Organic pores in deep shale controlled by macerals: Classification and pore characteristics of organic matter components in Wufeng Formation-Longmaxi Formation of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 23-34. | |
[24] | 王笑奇. 长宁地区五峰—龙马溪组页岩气成藏过程及富集机制研究[D]. 徐州: 中国矿业大学, 2021. |
WANG Xiaoqi. Study on shale gas accumulation process and enrichment mechanism of Wufeng-Longmaxi Formation in Changning area[D]. Xuzhou: China University of Mining and Technology, 2021. | |
[25] | 吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5): 854-865. |
WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865. | |
[26] | 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. |
ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology & Experiment, 2021, 43(5): 844-854. | |
[27] | 李鹏飞. 基于分子模拟研究深部煤储层孔隙结构和吸附特征——以大宁—吉县地区煤层为例[D]. 太原: 太原理工大学, 2019. |
LI Pengfei. Pore structural characterization and adsorption properties of deep coal reservoir based on molecular simulation: A case study from Daning-Jixian District coalbed[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
[28] | 鲁中灯, 刘岩, 陈祖林, 等. 烃源岩抽提物中藿烷分子碳同位素分析新方法及指示意义[J]. 石油实验地质, 2022, 44(2): 288-294. |
LU Zhongdeng, LIU Yan, CHEN Zulin, et al. An improved method and indications for the compound specific isotopic analysis of hopanes in source rock extracts[J]. Petroleum Geology & Experiment, 2022, 44(2): 288-294. | |
[29] | 陈彦鄂, 张志荣, GREENWOOD Paul. 油气包裹体分子组成的热释—色谱—质谱分析[J]. 石油实验地质, 2021, 43(5): 915-920. |
CHEN Yan'e, ZHANG Zhirong, GREENWOOD Paul. Pyrolysis-gas chromatography-mass spectrometry analyses of oil-bearing fluid inclusions composition[J]. Petroleum Geology & Experiment, 2021, 43(5): 915-920. |
[1] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[2] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[3] | WANG Dianlin, YANG Qiong, WEI Bing, JI Bingxin, XIN Jun, SUN Lin. Effect of betaine surfactant structure on the properties of CO2 foam film [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 313-321. |
[4] | ZHAO Renwen,XIAO Dianshi,LU Shuangfang,ZHOU Nengwu. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example [J]. Reservoir Evaluation and Development, 2023, 13(1): 52-63. |
[5] | XIANG Xueni,HUANG Liang,ZHOU Wen,ZOU Jie,ZHANG Zhuoya. Structural characteristics and gas storage properties of gas hydrates based on molecular simulation [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 825-832. |
[6] | LIU Yulin,FAN Lingxiao,FANG Dazhi,PENG Yongmin,ZENG Lianbo,FENG Dongjun. Application of a new source-reservoir classification method in production analysis of shale gas wells in Eastern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 429-436. |
[7] | LI Jinghui,HAN Xin,HUANG Sijing,YU Yangyang,QIANG Xianyu,GU Kangfu,HOU Dali. Molecular simulation of adsorption law for shale kerogen [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461. |
[8] | ZHANG Chenglin,YANG Xuefeng,ZHAO Shengxian,ZHANG Jian,DENG Feiyong,HE Yuanhan,ZHANG Deliang,WANG Gaoxiang,ZHONG Guanghai. Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 496-505. |
[9] | LIU Shugen, RAN Bo, YE Yuehao, WANG Shiyu, YANG Di, LUO Chao, HAN Yuyue, SONG Jinmin, ZHANG Xuan. Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou [J]. Reservoir Evaluation and Development, 2022, 12(1): 10-28. |
[10] | GAO Yuqiao,LIU Nana,ZHANG Peixian,HE Guisong,GAO Quanfang. Geological characteristic and its implications of shale exploration in Qijiang, Chongqing, China [J]. Reservoir Evaluation and Development, 2022, 12(1): 119-129. |
[11] | DU Wei,PENG Yongmin,LONG Shengxiang,NIE Haikuan,SUN Chuanxiang,YEERHAZI Talihaer. Geological characteristics of shale in Wufeng-Longmaxi Formation of Bayu outcrop in Daozhen, northern Guizhou [J]. Reservoir Evaluation and Development, 2022, 12(1): 130-138. |
[12] | ZHAN Xiaohong,CHEN Xuehui,LIU Chao,HE Wenbin,ZHANG Zhiping. Characteristics of Tiansheng Outcrop in Wufeng Formation- 1st Member of Longmaxi Formation, Wulong, Chongqing [J]. Reservoir Evaluation and Development, 2022, 12(1): 150-159. |
[13] | LIU Ruobing,WEI Xiangfeng,LIU Zhujiang,YAN Jihong,YUAN Tao,WEI Fubin. Geological section analysis of drilling in Wufeng-Longmaxi Formation in Well-JY1 [J]. Reservoir Evaluation and Development, 2022, 12(1): 47-57. |
[14] | XIONG Liang,DONG Xiaoxia,ZHAO Yong,WEI Limin,WANG Tong,WANG Yan. Characteristics and exploration significance of Wufeng-Longmaxi Formation stratigraphic section in Mount Huaying, Sichuan Basin [J]. Reservoir Evaluation and Development, 2022, 12(1): 58-67. |
[15] | WANG Hongyan,DONG Dazhong,SHI Zhensheng,QIU Zhen,LU Bin,SHAO Nan,SUN Shasha,ZHANG Surong. Lithfacies and “sweet spot” interval of marine shale in southern Sichuan: A case study of Shuanghe Outcrop in Wufeng-Longmaxi Formation, Changning [J]. Reservoir Evaluation and Development, 2022, 12(1): 68-81. |
|