Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (3): 402-413.doi: 10.13809/j.cnki.cn32-1825/te.2024.03.010
• Methodology and Theory • Previous Articles Next Articles
TANG Huiying(),DI Kaixiang(
),ZHANG Liehui,GUO Jingjing,ZHANG Tao,TIAN Ye,ZHAO Yulong
Received:
2023-10-30
Online:
2024-07-10
Published:
2024-06-26
CLC Number:
Huiying TANG,Kaixiang DI,Liehui ZHANG, et al. Tight oil imbibition based on nuclear magnetic resonance signal calibration method[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 402-413.
Table 1
Parameter before and after core cutting"
岩心切分前 编号 | 长度/ mm | 直径/ mm | 孔隙度/ % | 渗透率/ (10-3 μm2) | 层位 | 岩心切分后 编号 | 干重/ g | 长度/ mm | 直径/ mm | 孔隙度/ % | 渗透率/ (10-3 μm2) |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 79.78 | 25.31 | 14.13 | 0.011 6 | 长63 | 22-1 | 42.173 | 37.55 | 25.31 | 15.26 | 0.23 |
22-2 | 44.314 | 39.31 | 25.31 | 13.67 | 0.20 | ||||||
49 | 72.50 | 25.17 | 13.86 | 0.223 0 | 长62 | 49-1 | 37.976 | 34.41 | 25.17 | 14.72 | 2.25 |
49-2 | 38.964 | 35.24 | 25.17 | 14.11 | 2.36 | ||||||
57 | 79.15 | 25.27 | 12.54 | 0.051 7 | 长61 | 57-1 | 42.371 | 37.26 | 25.27 | 13.28 | 0.08 |
57-2 | 43.473 | 37.86 | 25.27 | 11.87 | 0.06 | ||||||
58 | 78.80 | 25.27 | 7.90 | 0.020 2 | 长61 | 58-1 | 46.177 | 37.69 | 25.27 | 9.12 | 0.07 |
58-2 | 45.559 | 37.37 | 25.27 | 8.31 | 0.05 | ||||||
19 | 77.86 | 25.20 | 15.18 | 0.050 0 | 长63 | 19-1 | 41.545 | 37.63 | 25.20 | 14.37 | 0.20 |
19-2 | 40.953 | 37.30 | 25.20 | 15.66 | 0.28 | ||||||
17 | 78.73 | 25.22 | 16.36 | 0.108 0 | 长63 | 17-1 | 40.963 | 37.43 | 25.22 | 12.18 | 0.65 |
17-2 | 41.276 | 37.72 | 25.22 | 17.59 | 1.26 | ||||||
47 | 81.40 | 25.28 | 13.83 | 0.102 0 | 长63 | 47-1 | 44.536 | 39.58 | 25.28 | 14.16 | 0.29 |
47-2 | 45.798 | 38.44 | 25.28 | 14.67 | 0.19 | ||||||
50 | 70.92 | 25.26 | 15.14 | 0.354 0 | 长62 | 50-1 | 36.934 | 33.51 | 25.26 | 16.44 | 3.58 |
50-2 | 37.669 | 34.04 | 25.26 | 15.94 | 2.66 |
Table 2
Imbibition oil recovery ratios results"
样品 编号 | 含油体积/ mL | 换油量/ mL | 换油率/ % | 渗吸稳定时间/ h |
---|---|---|---|---|
17-1 | 1.917 | 0.373 | 19.44 | 68 |
19-1 | 1.855 | 0.260 | 14.04 | 68 |
22-1 | 1.669 | 0.202 | 12.14 | 68 |
47-1 | 1.260 | 0.212 | 16.81 | 68 |
49-1 | 1.920 | 0.173 | 9.03 | 95 |
50-1 | 1.886 | 0.257 | 13.61 | 195 |
57-1 | 1.840 | 0.414 | 22.52 | 50 |
58-1 | 1.090 | 0.283 | 25.94 | 68 |
17-2 | 2.344 | 0.251 | 10.72 | 166 |
19-2 | 2.238 | 0.302 | 13.50 | 188 |
22-2 | 1.832 | 0.183 | 9.97 | 188 |
47-2 | 1.374 | 0.234 | 17.02 | 188 |
49-2 | 2.434 | 0.234 | 9.63 | 122 |
50-2 | 2.350 | 0.348 | 14.82 | 188 |
57-2 | 2.042 | 0.425 | 20.81 | 188 |
58-2 | 1.205 | 0.295 | 24.51 | 188 |
[1] | 邹才能, 杨智, 张国生, 等. 非常规油气地质学理论技术及实践[J]. 地球科学, 2023, 48(6): 2376-2397. |
ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Theory, Technology and practice of unconventional petroleum geology[J]. Earth Science, 2023, 48(6): 2376-2397. | |
[2] | 李昊远, 庞强, 魏克颖, 等. 致密砂岩储层孔隙结构分形特征对气水渗流规律的影响——以苏里格气田东南部桃2区块山1段为例[J]. 断块油气田, 2023, 30(2): 177-185. |
LI Haoyuan, PANG Qiang, WEI Keying, et al. Influence of pore structure fractal features of tight sandstone reservoir on gas-water seepage law: A case study of Shan 1 Member in Tao 2 block of southeastern Sulige Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 177-185. | |
[3] | 徐二社, 黄娟, 鹿坤, 等. 致密油运聚动力研究:以渤海湾盆地东濮凹陷Wg4井沙三中致密油为例[J]. 断块油气田, 2023, 30(1): 17-24. |
XU Ershe, HUANG Juan, LU Kun, et al. The driving force study of tight oil migration and accumulation: A case study of the tight oil in Es32 Formation in well Wg4 of Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 17-24. | |
[4] | 陈军军, 杨兴利, 高月, 等. 安塞油田坪桥区长6致密油储层微观特征[J]. 石油地质与工程, 2022, 36(5): 35-40. |
CHEN Junjun, YANG Xingli, GAO Yue, et al. Microstructure characteristics of Chang 6 tight sandstone reservoirs in Pingqiao area, Ansai oilfield, Ordos basin[J]. Petroleum Geology & Engineering, 2022, 36(5): 35-40. | |
[5] | 吴云飞, 刘成林, 冯小龙, 等. 致密砂岩储层微观结构特征及分类评价——以鄂尔多斯盆地南梁油田长9储层为例[J]. 断块油气田, 2023, 30(2): 246-253. |
WU Yunfei, LIU Chenglin, FENG Xiaolong, et al. Microstructural characteristics and classification evaluation of tight sandstone reservoirs: a case study of the Chang 9 reservoir in the Nanliang Oilfield of the Ordos Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 246-253. | |
[6] | GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[C] Paper SPE-167165-MS presented at the SPE Unconventional Resources Conference Canada, Calgary, Alberta, Canada, November 2013. |
[7] | GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: A field and simulation study[J]. Fuel, 2016, 163: 282-294. |
[8] | 刘小明. 大庆油田致密油水平井体积改造技术发展与建议[J]. 石油地质与工程, 2023, 37(4): 108-112. |
LIU Xiaoming. Development and suggestions for volume transformation of tight oil by horizontal wells in Daqing Oilfield[J]. Petroleum Geology & Engineering, 2023, 37(4): 108-112. | |
[9] | 蒋艳芳. 鄂尔多斯盆地致密油藏水平井二次压裂技术研究[J]. 石油地质与工程, 2022, 36(2): 93-95. |
JIANG Yanfang. Research of secondary fracturing technology for horizontal wells in tight reservoirs in Ordos Basin[J]. Petroleum Geology & Engineering, 2022, 36(2): 93-95. | |
[10] | BROWNSCOMBE E R, DYES A B. Water-imbibition displacement: A possibility for the Spraberry[C]// Paper presented at the Drilling and Production Practice Conference, Chicago, Illinois, November. |
[11] | MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7(2): 22-32. |
[12] | 孙志成, 王贤君. 大庆油田致密油藏压裂返排液复配影响因素分析[J]. 石油地质与工程, 2023, 37(2): 97-101. |
SUN Zhicheng, WANG Xianjun. Analysis of influencing factors of fracturing flowback fluid compounding in tight reservoirs of Daqing Oilfield[J]. Petroleum Geology & Engineering, 2023, 37(2): 97-101. | |
[13] | CHENG Y M. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012, 51(2): 143-151. |
[14] | HABIBI A, DEHGHANPOUR H, BINAZADEH M, et al. Advances in understanding wettability of tight oil formations: A Montney case study[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(4): 583-603. |
[15] | 贺东旭. 低渗致密油藏重复压裂用渗吸液的研究与应用[J]. 石油与天然气化工, 2023, 52(2): 99-103. |
HE Dongxu. Research and application of re-fracturing with imbibition technology in low permeability and tight oil reservoir[J]. Chemical Engineering of Oil & Gas, 2023, 52(2): 99-103. | |
[16] | DENNEY D. Countercurrent imbibition processes in diatomite[J]. Journal of Petroleum Technology, 2015, 53(10): 44. |
[17] |
李士奎, 刘卫东, 张海琴, 等. 低渗透油藏自发渗吸驱油实验研究[J]. 石油学报. 2007, 28(2): 109-112
doi: 10.7623/syxb200206022 |
LI Shikui, LIU Weidong, ZHANG Haiqin, et al. Experimental study of spontaneous imbibition in low-permeability reservoir[J]. Acta Petrolei Sinica, 2007, 28(2): 109-112
doi: 10.7623/syxb200206022 |
|
[18] | ZHOU Z, HOFFMAN B T, BEARINGER D, et al. Experimental and numerical study on spontaneous imbibition of fracturing fluids in shale gas formation[J]. SPE Drilling & Completion, 2016, 31(3): 168-177. |
[19] | 钟家峻, 杨小军, 陈燕虎, 等. 低渗透岩心自然渗吸实验新方法[J]. 石油化工应用, 2013, 2(6): 61-65. |
ZHONG Jiajun, YANG Xiaojun, CHEN Yanhu, et al. The new experimental way of spontaneous imbibition in low-permeability cores[J]. Petrochemical Industry Application, 2013, 2(6): 61-65. | |
[20] | 蒋卫东, 晏军, 杨正明. 火山岩气藏气水动态渗吸效率研究新方法[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 101-105. |
JIANG Weidong, YAN Jun, YANG Zhengming. A new method of researching gas-water dynamic imbibition efficiency in volcanic gas reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(1): 101-105. | |
[21] | STAROV V M. Surfactant solutions and porous substrates: spreading and imbibition[J]. Advances in Colloid & Interface Science, 2004, 111(1-2): 3-27. |
[22] | CHAHARDOWLI M, ZHOLDYBAYEVA A, FARAJZADEH R, et al. Solvent-enhanced spontaneous imbibition infractured reservoirs[C]// Paper SPE-164908-MS presented at the EAGE Annual Conference & Exhibition incorporating SPE Europec, London, UK, June 2013. |
[23] | SHEHATA A M, NASR-EL-DIN H A. Spontaneous imbibition study: Effect of connate water composition on low-salinity waterflooding in sandstone reservoirs[C]// Paper SPE-174063-MS presented at the SPE Western Regional Meeting, Garden Grove, California, USA, April 2015. |
[24] | KATHEL P, MOHANTY K K. EOR in tight oil reservoirs through wettability alteration[C]// Paper SPE-166281-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013. |
[25] | 许建红, 马丽丽. 低渗透裂缝性油藏自发渗吸渗流作用[J]. 油气地质与采收率, 2015, 22(3): 111-114. |
XU Jianhong, MA Lili. Spontaneous imbibition in fractured low permeability reservoir[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 111-114. | |
[26] | OLAFUYI O A, CINAR Y, KNACKSTEDT M A, et al. Spontaneous imbibition in small cores[C]// Paper SPE-109724-MS presented at the Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, October 2007. |
[27] | LI K W, HORNE R N. Extracting capillary pressure and global mobility from spontaneous imbibition data in oil-water-rock systems[C]// Paper SPE-80553-MS presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, September 2003. |
[28] | LIU J R, SHENG J J. Experimental investigation of surfactant enhanced spontaneous imbibition in Chinese shale oil reservoirs using NMR tests[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 414-422. |
[29] | LIU J R, SHENG J J, WANG X K, et al. Experimental study of wettability alteration and spontaneous imbibition in Chinese shale oil reservoirs using anionic and nonionic surfactants[J]. Journal of Petroleum Science and Engineering, 2019, 175(2): 624-633. |
[30] | REZAVEISI M, AYATOLLAHI S, ROSTAMI B. Experimental investigation of matrix wettability effects on water imbibition in fractured artificial porous media[J]. Journal of Petroleum Science and Engineering, 2012, 86-87: 165-171. |
[31] | 王家禄, 刘玉章, 陈茂谦, 等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油探与开发, 2009, 36(1): 86-90. |
WANG Jialu, LIU Yuzhang, CHEN Maoqian, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(1): 86-90. | |
[32] | 杨正明, 朱维耀, 陈权, 等. 低渗透裂缝性砂岩油藏渗吸机理及其数学模型[J]. 石油天然气学报, 2001, 23(增刊1): 25-27. |
YANG Zhengming, ZHU Weiyao, CHEN Quan, et al. Imbibition mechanism of low permeability fractured sandstone reservoir and its mathematical model[J]. Journal of Oil and Gas Technology, 2001, 23(suppl. 1): 25-27. | |
[33] |
杨正明, 刘学伟, 李海波, 等. 致密储集层渗吸影响因素分析与渗吸作用效果评价[J]. 石油勘探与开发, 2019, 46(4): 739-745.
doi: 10.11698/PED.2019.04.12 |
YANG Zhengming, LIU Xuewei, LI Haibo, et al. Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 739-745.
doi: 10.11698/PED.2019.04.12 |
|
[34] | 刘长利, 刘欣, 张莉娜, 等. 裂缝性特低渗油藏渗吸效果影响因素实验研究[J]. 辽宁石油化工大学学报, 2017, 37(3): 35-38. |
LIU Changli, LIU Xin, ZHANG Lina, et al. Experimented study on the influence factors of spontaneous imbibition in ultra low permeability fractured reservoir[J]. Journal of Liaoning Petrochemical University, 2017, 37(3): 35-38. | |
[35] | 朱维耀, 鞠岩, 赵明, 等. 低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J]. 石油学报, 2002, 23(6): 56-59. |
ZHU Weiyao, JU Yan, ZHAO Ming, et al. Spontaneous imbibition mechanisms of flow through porous media and waterflooding in low-permeability fractured sandstone reservoirs[J]. Acta Petrolei Sinica, 2002, 23(6): 56-59. | |
[36] | 刘敦卿. 页岩储层微观渗吸效应及其对油气产出的影响[D]. 北京: 中国石油大学(北京), 2021. |
LIU Dunqing. Microscopic imbibition effects in shale reservoir and its impact on production[D]. Beijing: China University of Petroleum(Beijing), 2021. | |
[37] | 冯绪宝. 页岩油油藏渗吸提高采收率实验研究[D]. 青岛: 中国石油大学(华东), 2020. |
FENG Xubao. Experimental study on enhancing oil recovery by imbibition in shale oil reservoir[D]. Qingdao: China University of Petroleum(East China), 2020. | |
[38] | 杨坤. 裂缝性致密砂岩油藏渗吸规律及其影响因素研究[D]. 北京: 中国石油大学(北京), 2020. |
YANG Kun. Research on imbibition law of fractured tight sandstone reservoir and its influencing factors[D]. Beijing: China University of Petroleum(Beijing), 2020. | |
[39] | MASON G, FISCHER H, MORROW N R, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition[J]. Journal of Petroleum Science & Engineering, 2010, 72(1): 195-205. |
[40] | 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3): 48-57. |
GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3): 48-57. | |
[41] | 程志林. 致密油砂岩渗吸实验及孔隙尺度模拟研究[D]. 北京: 中国石油大学(北京), 2021. |
CHENG Zhilin. Investigation on counter-current spontaneous imbibition in tight oil sandstones by experiments and pore scale simulation[D]. Beijing: China University of Petroleum(Beijing), 2021. |
[1] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[2] | GUO Deming,PAN Yi,SUN Yang,CHAO Zhongtang,LI Xiaonan,CHENG Shisheng. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. |
[3] | Luo Zhifeng,Zhang Nanlin,Zhao Liqiang,Xian Chao,Wang Chunlei,Pang Qin. Numerical simulation of temperature field in self-generated solid chemical fracturing [J]. Reservoir Evaluation and Development, 2021, 11(1): 117-123. |
[4] | JIANG Yongping. Synthesis of a new viscosity reducer for CO2 compound huff and puff in North Jiangsu heavy oil reservoirs and its effectiveness evaluation [J]. Reservoir Evaluation and Development, 2020, 10(3): 39-44. |
[5] | SUI Fen. Study on benefit extraction technology of super deep super heavy fractured-vuggy reservoir in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 94-100. |
[6] | CHENG Zhongfu,REN Bo,JIANG Yingfang,LIU Lei,YANG Zuguo. Feasibility of ground thermal cracking viscosity reduction and re-mixing technology of heavy oil in ultra-deep wells of Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 90-93. |
[7] | LIANG Zhiyan,WANG Leilei,TANG Zhaoxing. Technology of heavy oil recovered by screw pump combined with water soluble viscosity in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 111-115. |
[8] | SHI Leiting,ZHU Shijie,ZOU Jian,XUE Xinsheng,ZHAO Wensen,YE Zhongbin. Study on effective mobility control time ramge and influencing factors of polymer flooding [J]. Reservoir Evaluation and Development, 2019, 9(4): 31-35. |
[9] | Liu Xiaochun,Li Xiaorong,Yang Feitao,Ma Guowei,Liang Xiaojing. Effect of CO2 flooding on physical properties of produced crude oil in Huang 3 block of Changqing Oilfield [J]. Reservoir Evaluation and Development, 2019, 9(3): 36-40. |
[10] | Wang Yuanyuan,Song Kaopin,Liu Jian,Shen Qiuyu,Zhou Jilong,Yu Tao. Study on migration change rule of alkali/surfactant/polymer system in porous media [J]. Reservoir Evaluation and Development, 2018, 8(6): 51-56. |
[11] | Huang Bin,Li Xiaohui,Fu Cheng,Wang Xin. A mathematical model for the effect of shearing action on the apparent viscosity of polymer injected by a different medium injection tool [J]. Reservoir Evaluation and Development, 2018, 8(5): 48-55. |
[12] | Zhang Lina,Liu Xin,Zhang Yaozu. Formulation of production plan in overpressure shale gas reservoir [J]. Reservoir Evaluation and Development, 2018, 8(4): 73-76. |
|