[1] 许宁, 张俊杰, 叶锋, 等. 非常规油藏蓄能体积压裂的合理压裂规模研究[J]. 石油地质与工程, 2024, 38(2): 97-101. XU Ning, ZHANG Junjie, YE Feng, et al.Study on reasonable fracturing scale of accumulative volume fracturing in unconventional reservoir[J]. Petroleum Geology and Engineering, 2024, 38(2): 97-101. [2] 王世禄. 松辽盆地古龙页岩油水平井压裂施工参数优化[J]. 石油地质与工程, 2023, 37(5): 94-99. WANG Shilu.Optimization of fracturing construction parameters for Gulong shale oil with horizontal wells in Songliao Basin[J]. Petroleum Geology and Engineering, 2023, 37(5): 94-99. [3] 苏玉亮, 盛广龙, 王文东, 等. 页岩气藏多重介质流体跨尺度传质表征方法研究[J]. 中国科学: 技术科学, 2018, 48(5): 510-523. SU Yuliang, SHENG Guanglong, WANG Wendong, et al.Characterization methods for mass transfer of multiple media in shale gas reservoirs[J]. Scientia Sinica(Technologica), 2018, 48(5): 510-523. [4] 刘子雄, 李敬松, 黄子俊, 等. 利用录井资料计算低渗气井压裂产能的新方法[J]. 断块油气田, 2014, 21(4): 497-499. LIU Zixiong, LI Jingsong, HUANG Zijun, et al.A new method to calculate fracturing productivity of low permeability gas well using logging data[J]. Fault-Block Oil and Gas Field, 2014, 21(4): 497-499. [5] 赵金洲, 李志强, 胡永全, 等. 考虑页岩储层微观渗流的压裂产能数值模拟[J]. 天然气工业, 2015, 35(6): 53-58. ZHAO Jinzhou, LI Zhiqiang, HU Yongquan, et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J]. Natural Gas Industry, 2015, 35(6): 53-58. [6] 李泽沛, 彭小龙, 王毅. 基于三重介质模型的体积压裂后页岩气储层数值模拟方法[J]. 油气地质与采收率, 2016, 23(6): 105-111. LI Zepei, PENG Xiaolong, WANG Yi.Numerical simulation method of shale gas reservoirs after stimulated reservoir volume fracturing based on triple porous media model[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6): 105-111. [7] 张晨招. 新的页岩气多级压裂水平井产能预测模型研究[J]. 地下水, 2018, 40(5): 121-125. ZHANG Chenzhao.New shale gas multi-stage fracturing horizontal well productivity prediction model research[J]. Ground Water, 2018, 40(5): 121-125. [8] 张春晓, 马含含, 侯梦瑶, 等. 基于时间序列分析的油井产量预测应用综述[C]// 2023国际石油石化技术会议论文集. 西安: 西安石油大学, 2023. ZHANG Chunxiao, MA Hanhan, HOU Mengyao, et al.A review on application of oil well production prediction based on time series analysis method[C]// Proceedings of 2023 International Petroleum and Petrochemical Technology Conference. Xi’an: Xi’an Petroleum University, 2023. [9] 强璐, 任宇飞, 马焕焕, 等. 基于GA-BP神经网络的特低渗砂岩油藏水平井产能预测[J]. 石油地质与工程, 2024, 38(6): 63-67. QIANG Lu, REN Yufei, MA Huanhuan, et al.Prediction of horizontal well productivity in ultra-low permeability sandstone reservoirs based on GA-BP neutral network[J]. Petroleum Geology & Engineering, 2024, 38(6): 63-67. [10] 赵林丰, 李晓静, 王晶晶, 等. 多属性神经网络反演在重力流储层预测中的应用: 以歧口凹陷歧南斜坡沙一段为例[J]. 石油地质与工程, 2024, 38(5): 7-12. ZHAO Linfeng, LI Xiaojing, WANG Jingjing, et al.Application of multi-attribute neural network inversion in gravity flow reservoir prediction: A case study of Es1 Formation in Qinan Slope, Qikou Sag[J]. Petroleum Geology & Engineering, 2024, 38(5): 7-12. [11] 田亚鹏, 鞠斌山. 基于遗传算法改进BP神经网络的页岩气产量递减预测模型[J]. 中国科技论文, 2016, 11(15): 1710-1715. TIAN Yapeng, JU Binshan.A model for predicting shale gas production decline based on the BP neural network improved by the genetic algorithm[J]. China Sciencepaper, 2016, 11(15): 1710-1715. [12] 赵军, 夏宏泉, 刘红歧. 基于BP神经网络的油气产量历史预测[J]. 西南石油学院学报, 1998, 20(2): 23-26. ZHAO Jun, XIA Hongquan, LIU Hongqi.Prediction of oil/gas history based on neural network[J]. Journal of Southwest Petroleum Institute, 1998, 20(2): 23-26. [13] 周于皓, 刘慧卿, 祁鹏, 等. 基于循环神经网络的缝洞型油藏油井产量预测[J]. 计算物理, 2018, 35(6): 668-674. ZHOU Yuhao, LIU Huiqing, QI Peng, et al.Forecast of oil production in fractured-vuggy reservoir by using recurrent neural networks[J]. Chinese Journal of Computational Physics, 2018, 35(6): 668-674. [14] 高亚军, 唐力辉, 王振鹏, 等. 基于循环神经网络和数据差分处理的油田产量预测方法[J]. 中国海上油气, 2023, 35(3): 126-136. GAO Yajun, TANG Lihui, WANG Zhenpeng, et al.A method for oilfield production prediction based on recurrent neural network and data differential processing[J]. China Offshore Oil and Gas, 2023, 35(3): 126-136. [15] 张春晓. 基于深度长短期记忆神经网络的油气井产量预测优化方法[J]. 石油化工应用, 2023, 42(11): 28-31. ZHANG Chunxiao.Optimization method for oil and gas well production prediction based on deep long short-term memory neural network[J]. Petrochemical Industry Application, 2023, 42(11): 28-31. [16] 王洪亮, 林霞, 蒋丽维, 等. 基于聚类及长短时记忆神经网络预测油田产量[J]. 石油科学通报, 2024, 9(1): 62-72. WANG Hongliang, LIN Xia, JIANG Liwei, et al.An oilfield production prediction method based on clustering and long short-term memory neural network[J]. Petroleum Science Bulletin, 2024, 9(1): 62-72. [17] 刘嘉豪, 刘浩. 基于LSTM神经网络模型的石油单井产量预测[J]. 石油化工应用, 2023, 42(3): 38-41. LIU Jiahao, LIU Hao.Production prediction of single oil well based on LSTM neural network model[J]. Petrochemical Industry Application, 2023, 42(3): 38-41. [18] 韩克宁, 王伟, 樊冬艳, 等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656. HAN Kening, WANG Wei, FAN Dongyan, et al.Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. [19] 付钰绮, 王杨, 吴思樵, 等. 基于CNN-LSTM-ATT网络的页岩气井产量预测[J]. 天然气技术与经济, 2024, 18(2): 32-38. FU Yuqi, WANG Yang, WU Siqiao, et al.Predicting the production in shale gas wells based on CNN-LSTM-ATT model[J]. Natural Gas Technology and Economy, 2024, 18(2): 32-38. [20] 缪欢, 郑洪扬, 范文龙, 等. 四川盆地龙马溪组深层页岩储层压力与含气量动态演化过程[J]. 世界石油工业, 2024, 31(5): 19-29, 39. MIAO Huan, ZHENG Hongyang, FAN Wenlong, et al.Dynamic evolution process of pressure and gas content in the Longmaxi Formation deep shale reservoir of Sichuan Basin[J]. World Petroleum Industry, 2024, 31(5): 19-29. [21] 史伟光, 王启任. 基于改进灰狼算法的多任务优化算法[J]. 天津工业大学学报, 2023, 42(5): 81-86. SHI Weiguang, WANG Qiren.Improved grey wolf algorithm based multitask optimization algorithm[J]. Journal of Tiangong University, 2023, 42(5): 81-86. [22] 秦宏伍, 王立铮, 傅渝, 等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版), 2024, 59(3): 51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al.Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University (Natural Science), 2024, 59(3): 51-60. [23] 姜云. 灰狼优化混合算法及其K-means聚类优化研究[D]. 新乡: 河南师范大学, 2021. JIANG Yun.Research on hybrid grey wolf optimizers and their K-means clustering optimization[D]. Xinxiang: Henan Normal University, 2021. [24] 夏雪飞. 焦石坝背斜中北部页岩气井压力变化规律研究[J]. 江汉石油职工大学学报, 2018, 31(2): 14-17. XIA Xuefei.Research on pressure change pattern of north central shale gas wells in jiaoshiba anticline[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2018, 31(2): 14-17. [25] 商晓飞, 段太忠, 包汉勇, 等. 基于裂缝相表征的页岩气藏天然裂缝新模型:以涪陵页岩气田焦石坝区块为例[J]. 天然气工业, 2023, 43(6): 44-56. SHANG Xiaofei, DUAN Taizhong, BAO Hanyong, et al.A new model of natural fractures in shale gas reservoirs based on fracture facies characterization: A case study from the Jiaoshiba Block of the Fuling Shale Gas Field[J]. Natural Gas Industry, 2023, 43(6): 44-56. [26] 贾承造, 王祖纲, 姜林, 等.中国油气勘探开发成就与未来潜力: 深层、深水与非常规油气: 专访中国科学院院士、石油地质与构造地质学家贾承造[J].世界石油工业, 2023, 30(3): 1-8. JIA Chengzao, WANG Zugang, JIANG Lin, et al.Achievements and future potential for oil&gas exploration and development in China: Deep-formation, deep-water and unconventional reservoirs: Interview with JIA Chengzao, Academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3): 1-8. [27] 汪泽成, 赵振宇, 黄福喜, 等. 中国中西部含油气盆地超深层油气成藏条件与勘探潜力分析[J]. 世界石油工业, 2024, 31(1): 33-48. WANG Zecheng, ZHAO Zhenyu, HUANG Fuxi, et al.Ultra-deep hydrocarbon accumulation conditions and exploration potential in sedimentary in sedimentary basins of Central-Western China[J]. World Petroleum Industry, 2024, 31(1): 33-48. [28] 刘方圆. 涪陵页岩气田焦页XHF井生产动态分析及建议[J]. 地质科技情报, 2018, 37(3): 196-201. LIU Fangyuan.Advices for Well Jiaoye XHF, Fuling Shale gas field by analyzing production data[J]. Geological Science and Technology Information, 2018, 37(3): 196-201. |