Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 646-655.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.014
• Methodological Theory • Previous Articles Next Articles
JIANG Beibei1(), LIU Jiabo1(
), ZHANG Guoqiang1, WANG Dong1, LI Ying1, LUO Hongwen1, ZHOU Lang2
Received:
2024-03-12
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
JIANG Beibei,LIU Jiabo,ZHANG Guoqiang, et al. Research on sealing performance evaluation of CO2 storage in salt-gypsum caprocks of depleted gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 646-655.
Table 1
Comparison of petrophysical properties of caprocks"
岩性 | 塑性系数 | 孔隙度/% | 渗透率/10-3 | 突破压力/MPa | 弹性模量/104 MPa | 泊松比 | |
---|---|---|---|---|---|---|---|
盐-膏岩 | 盐岩 | 2.00~2.17 | <3.0 | <10-4 | >20.0 | 0.5~1.0 | 0.20~0.44 |
膏岩 | 2.0~8.0 | 10-4~10-3 | 5.0~10.0 | 1.5~4.0 | 0.20~0.45 | ||
泥岩 | 1.31~1.42 | 1.0~10.0 | 10-8~10-2 | 6.0~15.0 | 2.0~5.0 | 0.25~0.35 | |
页岩 | 0.10~0.50 | 1.0~10.0 | 10-9~10-5 | 0.9~40.0 | 1.5~2.5 | 0.10~0.35 | |
砂岩 | 0.20~0.40 | 1.6~28.0 | 1~103 | 5.0~41.0 | 3.3~7.8 | 0.30~0.35 |
Table 3
Rationale for selecting sealing performance evaluation indices for CO2 storage in salt-gypsum caprocks of depleted gas reservoirs"
一级指标 | 二级指标 | 选取原因 |
---|---|---|
宏观指标 | CO2埋深 | ①埋深反映盖层所处地质力学状态、岩石成岩程度和沉积环境[ ②盖层厚度越大说明其盖层横向展布范围越大、沉积环境越稳定 ③盖层连续性指不透水岩层(如页岩、盐岩、致密灰岩)在空间上的完整性和横向延展性是阻止CO2垂向迁移的关键屏障 ④盖层岩性是评估CO2封存场地可行性和长期安全性的关键因素,岩性越好,盖层密闭能力越强 ⑤塑性系数越大,岩石塑性变形能力越强 |
盖层厚度 | ||
盖层连续性 | ||
盖层岩性 | ||
塑性系数 | ||
微观指标 | 中值半径 | ①中值半径可提供关于盖层孔隙的平均大小信息,并间接反映盖层的渗透性 ②扩散系数是盖层结构致密性、微孔隙发育状况和密闭性的重要指标 ③比表面积是岩石颗粒大小、孔隙发育程度、压实与胶结程度的综合表现 |
扩散系数 | ||
比表面积 | ||
突破压力 | 突破压力 | 突破压力越大,则密闭性能越好[ |
孔-渗指标 | 孔隙度 | 可衡量盖层岩石孔隙空间体积和CO2气体在盖层中的流通能力[ |
渗透率 |
Table 5
Comprehensive evaluation criteria for caprock sealing capacity"
评价集 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
埋深/km | 厚度/m | 连续性/km2 | 岩性 | 塑性系数 | 中值半径/nm | 扩散系数/(cm2/s) | 比表面积/(m2/g) | 突破压力/MPa | 孔隙度/% | 渗透率/10-3 μm2 | |
好 | ≥2.0 | ≥200 | ≥30 | 盐岩 | ≥6 | <2 | <10-9 | 15~<30 | ≥15 | <2 | <10-4 |
较好 | 1.5~<2.0 | 150~<200 | 25~<30 | 盐膏岩 | 4~<5 | 2~<4 | 10-9~<10-8 | 30~<40 | 12~<15 | 2~<5 | 10-4~<10-3 |
中等 | 1.0~<1.5 | 100~<150 | 20~<25 | 泥岩/页岩 | 3~<4 | 4~<8 | 10-8~<10-7 | 40~<60 | 10~<12 | 5~<8 | 10-3~<10-2 |
差 | <1.0 | <100 | <20 | 砂岩 | <3 | ≥8 | ≥10-7 | ≥60 | <10 | ≥8 | ≥10-2 |
准则层权重系数 | 0.112 | 0.112 | 0.351 | 0.425 | |||||||
评价层权重系数 | 0.307 | 0.307 | 0.203 | 0.114 | 0.069 | 0.333 | 0.333 | 0.333 | 1.000 | 0.250 | 0.750 |
[1] | ASEM P, GARDONI P. A probabilistic, empirical model for permeability of mudstone[J]. Probabilistic Engineering Mechanics, 2022, 69: 103262. |
[2] | 陈博文, 王锐, 李琦, 等. CO2 地质封存盖层密闭性研究现状与进展[J]. 高校地质学报, 2023, 29(1): 85-99. |
CHEN Bowen, WANG Rui, LI Qi, et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities, 2023, 29(1): 85-99. | |
[3] | 何祖清, 何同, 伊伟锴, 等. 中国石化枯竭气藏型储气库注采技术及发展建议[J]. 地质与勘探, 2020, 56(3): 605-613. |
HE Zuqing, HE Tong, YI Weikai, et al. Development suggestions and production technologies and development of Sinopec’s gas storage of depleted gas reservoir type[J]. Geology and Exploration, 2020, 56(3): 605-613. | |
[4] | 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095. |
DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095. | |
[5] | 徐振平, 陈书平, 罗彩明, 等. 塔里木盆地中寒武统膏盐岩分布及封闭性评价[J]. 中国石油勘探, 2023, 28(5): 54-67. |
XU Zhenping, CHEN Shuping, LUO Caiming, et al. Distribution and sealing capacity evaluation of gypsum-salt rocks in the Middle Cambrian in Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5): 54-67. | |
[6] | 张立松, 蒋梦罡, 李文杰, 等. 考虑地质断层激活后的 CO2封存流体泄漏模型及数值分析[J]. 油气藏评价与开发, 2022, 12(5): 754-763. |
ZHANG Lisong, JIANG Menggang, LI Wenjie, et al. Mathematical model and numerical analysis for leakage of fluid along geological fault during CO2 storage[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 754-763. | |
[7] | 刘漪雯, 付美龙, 王长权, 等. CO2驱不同注入方式对低渗透储层渗流能力的影响[J]. 油气地质与采收率, 2024, 31(2): 79-85. |
LIU Yiwen, FU Meilong, WANG Changquan, et al. Influence of different injection methods of CO2 flooding on flow capacity of low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 79-85. | |
[8] | 陈龙龙, 汤瑞佳, 江绍静, 等. 致密砂岩油藏CO2灌注提高混相程度研究[J]. 石油与天然气化工, 2024, 53(4): 79-84. |
CHEN Longlong, TANG Ruijia, JIANG Shaojing, et al. CO2 perfusion to improve degree of miscibility in tight sandstone reservoir[J]. Chemical Engineering of Oil & Gas, 2024, 53(4): 79-84. | |
[9] | 魏宁, 李小春, 王颖, 等. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. 岩土力学, 2014, 35(1): 98-104. |
WEI Ning, LI Xiaochun, WANG Ying, et al. Experimental studies of CO2 breakthrough pressure of argillaceous siltstone under different pressures and temperatures[J]. Rock and Soil Mechanics, 2014, 35(1): 98-104. | |
[10] | 张璐, 国建英, 林潼, 等. 碳酸盐岩盖层突破压力的影响因素分析[J]. 石油实验地质, 2021, 43(3): 461-467. |
ZHANG Lu, GUO Jianying, LIN Tong, et al. Influencing factors for breakthrough pressure of carbonate caprocks[J]. Petroleum Geology & Experiment, 2021, 43(3): 461-467. | |
[11] | 刘桃, 吴通, 方朝刚, 等. 下扬子地区无为凹陷三叠系气藏超压特征及其成因分析[J]. 华东地质, 2023, 44(4): 415-423. |
LIU Tao, WU Tong, FANG Chaogang, et al. Overpressure characteristics and genesis of the Triassic gas reservoirs in Wuwei Depression of Lower Yangtze Region[J]. East China Geology, 2023, 44(4): 415-423. | |
[12] | 俞凌杰, 范明, 刘伟新, 等. 盖层封闭机理研究[J]. 石油实验地质, 2011, 33(1): 91-95. |
YU Lingjie, FAN Ming, LIU Weixin, et al. Seal mechanism of cap rocks[J]. Petroleum Geology & Experiment, 2011, 33(1): 91-95. | |
[13] | 刘丹青. 鄂尔多斯盆地CO2地质封存联合页岩气开采技术研究[D]. 北京: 中国地质大学(北京), 2017. |
LIU Danqing. Study on the CO2 enhanced shale gas recovery technology in Ordos Basin, China[D]. Beijing: China University of Geosciences, 2017. | |
[14] | JIA S, WEN C X, FU X F, et al. A caprock evaluation methodology for underground gas storage in a deep depleted gas reservoir: A case study for the X9 lithologic trap of Langgu sag, Bohai Bay Basin, China[J]. Energies, 2022, 15(12): 4351. |
[15] | JIN Z J, YUAN Y S, SUN D S, et al. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the Lower Paleozoic sequences, Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2014, 49: 121-128. |
[16] | ZUO K, YANG J, LUO H W, et al. An efficient inversion method to interpret distributed temperature measurement of horizontal wells in shale gas reservoirs[J]. Petroleum Science and Technology, 2024, 42(1): 146-167. |
[17] | 徐振平, 陈书平, 罗彩明, 等. 塔里木盆地中寒武统膏盐岩分布及封闭性评价[J]. 中国石油勘探, 2023, 28(5): 54-67. |
XU Zhenping, CHEN Shuping, LUO Caiming, et al. Distribution and sealing capacity evaluation of gypsum-salt rocks in the Middle Cambrian in Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5): 54-67. | |
[18] | 李双建, 孙冬胜, 郑孟林, 等. 四川盆地寒武系盐相关构造及其控油气作用[J]. 石油与天然气地质, 2014, 35(5): 622-631. |
LI Shuangjian, SUN Dongsheng, ZHENG Menglin, et al. Salt-related structure and its control on hydrocarbon of the Cambrian in Sichuan Basin[J] . Oil & Gas Geology, 2014, 35(5) : 622-631. | |
[19] | 金之钧, 龙胜祥, 周雁, 等. 中国南方膏盐岩分布特征[J]. 石油与天然气地质, 2006, 27(5): 571-583. |
JIN Zhijun, LONG Shengxiang, ZHOU Yan, et al. A study on the distribution of saline-deposit in southern China[J]. Oil & Gas Geology, 2006, 27(5): 571-583. | |
[20] | 林潼, 王铜山, 潘文庆, 等. 埋藏过程中膏岩封闭有效性演化特征: 以塔里木盆地寒武系深层膏岩盖层为例[J]. 石油与天然气地质, 2021, 42 (6): 1354-1364. |
LIN Tong, WANG Tongshan, PAN Wenqing, et al. Evaluation of sealing effectiveness of gypsolyte during burial: A case study of the gypsolyte caprock in deep Cambrian, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1354-1364. | |
[21] | 刘伟. 层状盐岩储气库围岩渗透特性及密闭性评价研究[D]. 北京: 中国科学院大学, 2015. |
LIU Wei. On surrounding rock permeability characteristics and tightness assessment of natural gas storage in bedded salt formation[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
[22] | 高帅, 魏宁, 李小春. 盖岩CO2突破压测试方法综述[J]. 岩土力学, 2015, 36(9): 2716-2727. |
GAO Shuai, WEI Ning, LI Xiaochun. Review of CO2 breakthrough pressure measurement methods on caprocks[J]. Rock and Soil Mechanics, 2015, 36(9): 2716-2727. | |
[23] | 高霞, 谢庆宾. 浅析膏盐岩发育与油气成藏的关系[J]. 石油地质与工程, 2007, 21(1): 9-11. |
GAO Xia, XIE Qingbin. Brief discussion on the relation between the development of salt & gypsum rock and hydrocarbon accumulation[J]. Petroleum Geology and Engineering, 2007, 21(1): 9-11. | |
[24] | 刘林, 桑琴, 曹建, 等. 枯竭气藏改建储气库盖层封闭能力综合评价: 以川西北中坝气田须二气藏为例[J]. 大庆石油地质与开发, 2022, 41(6): 42-50. |
LIU Lin, SANG Qin, CAO Jian, et al. Comprehensive evaluation of sealing capacity of depleted gas reservoir reconstructed to gas storage: A case study of Xu 2 gas reservoir in Zhongba Gas Field, northwest Sichuan[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6): 42-50. | |
[25] | 谢增业, 魏国齐, 李剑, 等. 四川盆地川中隆起带震旦系—二叠系天然气地球化学特征及成藏模式[J]. 中国石油勘探, 2021, 26(6): 50-67. |
XIE Zengye, WEI Guoqi, LI Jian, et al. Geochemical characteristics and accumulation pattern of gas reservoirs of the Sinian-Permian in central Sichuan uplift zone, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6): 50-67. | |
[26] | 马志立. 高石梯-磨溪地区灯四段碳酸盐岩储层特征研究[D]. 西安: 西安石油大学, 2019. |
MA Zhili. Carbonate reservoir characterization of the fourth section of dengying formation in Gao Shi Ti-Mo xi area[D]. Xi’an: Xi’an Shiyou University, 2019. | |
[27] | 王宇鹏. 四川安岳大气田泥岩盖层封闭天然气有效性定量评价[D]. 大庆: 东北石油大学, 2019. |
WANG Yupeng. Quantitative evaluation of effectiveness of mudstone caprock sealing natural gas in Anyue gas field, Sichuan basin[D]. Daqing: Northeast Petroleum University, 2019. | |
[28] | 张璐, 谢增业, 王志宏, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系气藏盖层特征及封闭能力评价[J]. 天然气地球科 学, 2015, 26(5): 796-804. |
ZHANG Lu, XIE Zengye, WANG Zhihong, et al. Caprock characteristics and sealing ability evaluation of Sinian-Cambrian gas reservoirs in Gaoshiti-Moxi Area, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(5): 796-804. |
[1] | GUO Tonglou. Review and reflection on shale gas development in China: From Silurian to Cambrian [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 339-348. |
[2] | ZHU Suyang, LIU Wei, WANG Yunfeng, JIA Chunsheng, CHEN Chaogang, PENG Xiaolong. Current situation and prospects of coalbed methane exploration and development in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 185-193. |
[3] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[4] | TANG Jiandong, WANG Zhilin, GE Zhengjun. CO2 flooding technology and its application in Jiangsu Oilfield in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 18-25. |
[5] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[6] | WANG Jianmeng,CHEN Jie,JI Lidong,LIU Ronghe,ZHANG Qian,HUANG Dongjie,YAN Ping. Research progress and prospect of state equation in CO2 storage [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 305-312. |
[7] | YANG Yu,XU Qilin,LIU Ronghe,HUANG Dongjie,YAN Ping,WANG Jianmeng. Phase equilibrium law of CO2 storage in depleted gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 280-287. |
[8] | ZHANG Lisong,JIANG Menggang,LI Wenjie,ZHANG Shiyan,CHEN Shaoying,WANG Wei,SUN Zhixue. Mathematical model and numerical analysis for leakage of fluid along geological fault during CO2 storage [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 754-763. |
[9] | LI Donghui,TIAN Lingyu,NIE Haikuan,PENG Zeyang. Factor analysis and comprehensive evaluation model of shale gas well productivity based on fuzzy analytic hierarchy process: Taking Jiaoshiba shale gas field in Sichuan Basin as an example [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 417-428. |
[10] | WANG Hongyan,DONG Dazhong,SHI Zhensheng,QIU Zhen,LU Bin,SHAO Nan,SUN Shasha,ZHANG Surong. Lithfacies and “sweet spot” interval of marine shale in southern Sichuan: A case study of Shuanghe Outcrop in Wufeng-Longmaxi Formation, Changning [J]. Reservoir Evaluation and Development, 2022, 12(1): 68-81. |
[11] | LIU Ruobing,WEI Xiangfeng,LIU Zhujiang,YAN Jihong,YUAN Tao,WEI Fubin. Geological section analysis of drilling in Wufeng-Longmaxi Formation in Well-JY1 [J]. Reservoir Evaluation and Development, 2022, 12(1): 47-57. |
[12] | ZHU Tong,ZHANG Zhe,FENG Dongjun,ZHENG Rongcai,WANG Feng,PENG Yongmin. Geological characteristics of mud shale in Da'anzhai section of Fulu Town, Liangping [J]. Reservoir Evaluation and Development, 2022, 12(1): 139-149. |
[13] | HE Wenyuan,FENG Zihui,ZHANG Jinyou,BAI Yunfeng,FU Xiuli,ZHAO Ying,CHENG Xinyang,GAO Bo,LIU Chang. Characteristics of geological section of Well-GY8HC in Gulong Sag, Northern Songliao Basin [J]. Reservoir Evaluation and Development, 2022, 12(1): 1-9. |
[14] | TANG Liangrui,JIA Ying,YAN Jin,LI Guanghui,WANG Yong,HE Youwei,QING Jiazheng,TANG Yong. Study on calculation method of CO2 storage potential in depleted gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863. |
[15] | ZHANG Zonglin,LYU Guangzhong,WANG Jie. CCUS and its application in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 812-822. |
|