Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 497-505.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.004
• Exploration & Development of Shale Oil and Gas • Previous Articles Next Articles
SONG Wenhui(),LIU Lei,SUN Hai,ZHANG Kai,YANG Yongfei,YAO Jun
Received:
2021-01-14
Online:
2021-08-19
Published:
2021-08-26
CLC Number:
Wenhui SONG,Lei LIU,Hai SUN, et al. Pore structure characterization and flow ability of shale oil reservoir based on digital cores[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 497-505.
Table 1
Input parameters for shale oil transport model validation in an inorganic pore or an organic pore[12,13]"
参数 | 无机质 | 有机质 |
---|---|---|
滑移长度(m) | 9×10-10 | 1.4×10-7 |
吸附相厚度(m) | 7×10-10 | 7×10-10 |
辛烷黏度(Pa·s) | 2.95×10-4 | 3.97×10-4 |
分子数密度(m3) | 2.871×1028 | 2.871×1028 |
驱动力[m·kg/(mol·s2)] | 3.138×1010 | 4.814×109 |
孔隙宽度(m) | 5.24×10-9 | 5.24×10-9 |
[1] | 孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5):569-575. |
SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5):569-575. | |
[2] | 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5):553-559. |
YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5):553-559. | |
[3] |
MA L, DOWEY P J, RUTTER E, et al. A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D[J]. Energy, 2019, 181:1285-1297.
doi: 10.1016/j.energy.2019.06.011 |
[4] |
AFSHARPOOR A, JAVADPOUR F. Pore connectivity between organic and inorganic matter in shale: Network modeling of mercury capillary pressure[J]. Transport in Porous Media, 2018, 125(3):503-519.
doi: 10.1007/s11242-018-1132-0 |
[5] |
WU T H, LI X, ZHAO J L, et al. Multiscale pore structure and its effect on gas transport in organic-rich shale[J]. Water Resources Research, 2017, 53(7):5438-5450.
doi: 10.1002/2017WR020780 |
[6] |
OUGIER-SIMONIN A, RENARD F, Boehm C, et al. Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162:198-226.
doi: 10.1016/j.earscirev.2016.09.006 |
[7] | LOUCKS R G, REED R M. Natural microfractures in unconventional shale-oil and shale-gas systems: Real, hypothetical, or wrongly defined?[J]. 2016. |
[8] |
LANDRY C J, EICHHUBL P, PRODANOVIĆ M, et al. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(5):3366-3376.
doi: 10.1002/jgrb.v121.5 |
[9] | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1):14-26. |
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1):14-26. | |
[10] | 宁方兴, 王学军, 郝雪峰, 等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报, 2017, 38(2):185-195. |
NING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Occurrence mechanism of shaleoil with different lithofacies in Jiyang depression[J]. Acta Petrolei Sinica, 2017, 38(2):185-195. | |
[11] | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4):789-802. |
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration And Development, 2019, 46(4):789-802. | |
[12] |
WANG S, JAVADPOUR F, FENG Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171:74-86.
doi: 10.1016/j.fuel.2015.12.071 |
[13] |
WANG S, JAVADPOUR F, FENG QH. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181:741-758.
doi: 10.1016/j.fuel.2016.05.057 |
[14] | WANG S, FENG QH, JAVADPOUR F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147:9-24. |
[15] |
MAJUMDER M, CHOPRA N, ANDREWS R, et al. Enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44-44.
doi: 10.1038/438044a |
[16] |
WHITBY M, CAGNON L, THANOU M, et al. Enhanced fluid flow through nanoscale carbon pipes[J]. Nano Letters, 2008, 8(9):2632-2637.
doi: 10.1021/nl080705f |
[17] |
HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon Nanotubes[J]. Science, 2006, 312(5776):1034-1037.
doi: 10.1126/science.1126298 |
[18] |
LIU P Y, LI J F, SUN S Y, et al. Numerical investigation of carbonate acidizing with gelled acid using a coupled thermal-hydrologic-chemical model[J]. International Journal of Thermal Sciences, 2021, 160:106700.
doi: 10.1016/j.ijthermalsci.2020.106700 |
[19] | SONG W H, YIN Y, LANDRY C J, et al. A local-effective-viscosity multirelaxation-time lattice boltzmann pore-network coupling model for gas transport in complex nanoporous media[J]. SPE Journal, 2020. |
[20] |
BLUNT M J. Flow in porous media—pore-network models and multiphase flow[J]. Current opinion in colloid & interface science, 2001, 6(3):197-207.
doi: 10.1016/S1359-0294(01)00084-X |
[21] |
BLUNT M J, BIJELJIC B, DONG H, et al. Pore-scale imaging and modelling[J]. Advances in water resources, 2013, 51:197-216.
doi: 10.1016/j.advwatres.2012.03.003 |
[22] |
AFSHARPOOR A, JAVADPOUR F. Liquid slip flow in a network of shale noncircular nanopores[J]. Fuel, 2016, 180:580-590.
doi: 10.1016/j.fuel.2016.04.078 |
[23] |
YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251:683-692.
doi: 10.1016/j.fuel.2019.03.083 |
[24] |
SONG W H, YAO J, MA J S, et al. Assessing relative contributions of transport mechanisms and real gas properties to gas flow in nanoscale organic pores in shales by pore network modelling[J]. International Journal of Heat and Mass Transfer, 2017, 113:524-537.
doi: 10.1016/j.ijheatmasstransfer.2017.05.109 |
[1] | MA Xiaoli, BI Yongbin, JIANG Mingjie, LI Dan, GU Xiao. Characteristics of water phase permeability variation in medium-low permeability oil reservoirs during high multiple waterflooding [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 103-109. |
[2] | ZHONG Zhiguo, YU Wenquan, DUAN Hongliang, YANG Baoliang. Progress and research direction of shale oil exploration in complex fault blocks with low to medium TOC in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 11-18. |
[3] | MA Peishen, SUN Yili, SHU Zheng, TAN Yeqiang, YU Qiang, ZHANG Wei, WU Changhu, QI Yong. Study on variation in decline rate with water cut using relative permeability curves [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 110-115. |
[4] | CHAI Nina, LI Jiarui, ZHANG Liwen, WANG Junjie, LIU Yapeng, ZHU Lun. Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 124-130. |
[5] | QIAN Shiyou, YANG Zhiqiang, XU Chen. Logging evaluation methods of low-organic matter fault-block shale oil in the Subei Basin and their application [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 19-27. |
[6] | ZHOU Xu, MA Chao, LIU Chao, TANG Jiajing, LIU Yilin. Study on the influence of shale oil saturation on imbibition recovery rate [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 73-78. |
[7] | CUI Chuanzhi, SUI Yingfei, WANG Yidan, WU Zhongwei, LI Jing. Relative permeability model of polymer particle dispersed phase for oil displacement based on fractal theory [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 88-95. |
[8] | JIA Junhong, YU Guangming, LI Shuman, XIE Zhen, PENG Rong, TANG Yong. Analysis of key controlling factors for water injection deficiency in low-permeability oil reservoirs: A case study of Chang-8 reservoir in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 892-898. |
[9] | YU Wenduan, GAO Yuqiao, ZAN Ling, MA Xiaodong, YU Qilin, LI Zhipeng, ZHANG Zhihuan. Distribution of oil bearing and shale oil-rich strata in the second member of Funing Formation in Qintong Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 688-698. |
[10] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[11] | ZHANG Fei, LI Qiuzheng, JIANG Aming, DENG Ci. Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 707-713. |
[12] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[13] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[14] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[15] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
|