Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 527-535.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.008
• Exploration & Development of Shale Oil and Gas • Previous Articles Next Articles
CHEN Liang1(),HU Jinke2,GENG Dong1,LI Ziyu3
Received:
2020-08-14
Online:
2021-08-19
Published:
2021-08-26
CLC Number:
Liang CHEN,Jinke HU,Dong GENG, et al. A new technology of plugging and collapse prevention with oil-based drilling fluid in Chongqing shale gas wells[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 527-535.
Table 1
Ten lost circulation stoppage operations during the second spud"
序号 | 水泥浆量(m3) | 堵漏浆量(m3) | 井深(m) | 下入深度(m) | 水泥塞长(m) | 井段深度(m) |
---|---|---|---|---|---|---|
1 | 6 | 6 | 3 312.44 | 3 312 | 132.44 | 3 180~3 312.44 |
2 | 12 | 10 | 3 321.32 | 3 321 | 40 | 3 280~3 320 |
3 | 16 | 0 | 3 475 | 3 475 | 164 | 3 311~3 475 |
4 | 16 | 8 | 3 475 | 3 475 | 163 | 3 312~3 475 |
5 | 0 | 16 | 3 503.03 | 3 503 | ||
6 | 12 | 16 | 3 514.4 | 3 400 | 257.4 | 3 258~3 515.4 |
7 | 13 | 10 | 4 748 | 3 410 | 172 | 3 168~3 340 |
8 | 16 | 12 | 4 748 | 3 410 | 99 | 3 274~3 373 |
9 | 18 | 20 | 4 748 | 3 410 | 128 | 3 290~3 418 低钻压井段3 382~3 400 |
10 | 18 | 12 | 4 748 | 3 410 | 224 | 3 200~3 424 钻压放空井段3 327.5~3 374 钻压放空井段3 374~3 395 |
Table 4
Rheological test"
配方 | 条件 | 不同转速下的黏度计读数 | 表观黏度 (mPa·s) | 塑性黏度 (mPa·s) | 动切力 (Pa) | 动塑比 [Pa/(mPa·s)] | |||
---|---|---|---|---|---|---|---|---|---|
600 r/min | 300 r/min | 6 r/min | 3 r/min | ||||||
基浆 | 热滚前 | 80 | 49 | 7 | 6 | 40 | 31 | 9 | 0.29 |
120 ℃热滚后 | 69 | 41 | 8 | 7 | 34.5 | 28 | 6.5 | 0.23 | |
140 ℃热滚后 | 70 | 41 | 8 | 7 | 35 | 29 | 6 | 0.21 | |
160 ℃热滚后 | 64 | 38 | 7 | 6 | 32 | 26 | 6 | 0.23 | |
180 ℃热滚后 | 60 | 34 | 6 | 5 | 30 | 26 | 4 | 0.15 | |
基浆 + 聚硅纤维 | 热滚前 | 87 | 57 | 9 | 8 | 43.5 | 30 | 13.5 | 0.45 |
120 ℃热滚后 | 75 | 45 | 9 | 8 | 37.5 | 30 | 7.5 | 0.25 | |
140 ℃热滚后 | 73 | 44 | 8 | 7 | 36.5 | 29 | 7.5 | 0.26 | |
160 ℃热滚后 | 67 | 40 | 7 | 6 | 33.5 | 27 | 6.5 | 0.24 | |
180 ℃热滚后 | 64 | 38 | 7 | 6 | 32 | 26 | 6 | 0.23 |
Table 5
Effect on demulsification voltage and HTHP filtration"
配方 | 条件 | 破乳电压(V) | 高温高压滤失量(mL) | |||
---|---|---|---|---|---|---|
第1次测量 | 第2次测量 | 第3次测量 | 平均值 | |||
基浆 | 热滚前 | 460 | 438 | 414 | 437 | |
120 ℃热滚后 | 1 067 | 1 159 | 1 120 | 1 115 | 3.8 | |
140 ℃热滚后 | 679 | 643 | 623 | 648 | 3.9 | |
160 ℃热滚后 | 988 | 1 005 | 934 | 976 | 3.9 | |
180 ℃热滚后 | 1 003 | 981 | 1 089 | 1 024 | 4.1 | |
基浆+聚硅纤维 | 热滚前 | 881 | 825 | 792 | 833 | |
120 ℃热滚后 | 1 003 | 1 118 | 1 060 | 1 060 | 2.7 | |
140 ℃热滚后 | 748 | 802 | 790 | 780 | 2.9 | |
160 ℃热滚后 | 1 002 | 1 041 | 1 059 | 1 034 | 3.3 | |
180 ℃热滚后 | 1 104 | 1 127 | 1 189 | 1 140 | 3.5 |
Table 6
Sand bed experiment"
配方 | 条件 | 泥浆入侵深度(mm) | |||
---|---|---|---|---|---|
瞬时 | 10 min | 20 min | 30 min | ||
基浆 | 热滚前 | 全渗透 | 全渗透 | 全渗透 | 全渗透 |
120 ℃热滚后 | 109 | 121 | 127 | 130 | |
140 ℃热滚后 | 120 | 142 | 149 | 150 | |
160 ℃热滚后 | 138 | 150 | 全渗透 | 全渗透 | |
180 ℃热滚后 | 141 | 全渗透 | 全渗透 | 全渗透 | |
基浆+聚硅纤维 | 热滚前 | 全渗透 | 全渗透 | 全渗透 | 全渗透 |
120 ℃热滚后 | 8 | 9 | 9 | 10 | |
140 ℃热滚后 | 8 | 11 | 12 | 12 | |
160 ℃热滚后 | 7 | 9 | 9 | 10 | |
180 ℃热滚后 | 7 | 10 | 10 | 11 |
Table 7
Influence of plugging materials on oil-based drilling fluid"
配方 | 不同转速下的黏度计读数 | 塑性黏度 (mPa·s) | 动切力(Pa) | 初切 (Pa) | 终切 (Pa) | 高温高压滤失量(mL) | 破乳电压 (V) | |||
---|---|---|---|---|---|---|---|---|---|---|
600 r/min | 300 r/min | 6 r/min | 3 r/min | |||||||
① | 108 | 66 | 7 | 5 | 42 | 12 | 3 | 6 | 1.2 | 880 |
② | 121 | 74 | 9 | 7 | 47 | 13.5 | 3.5 | 6 | 1 | 870 |
③ | 122 | 77 | 9 | 7 | 45 | 16 | 3.5 | 6 | 0.8 | 880 |
④ | 106 | 65 | 7 | 5 | 41 | 12 | 3 | 6 | 0.9 | 900 |
⑤ | 107 | 65 | 7 | 5 | 42 | 11.5 | 3 | 6 | 0.8 | 910 |
⑥ | 116 | 70 | 8 | 6 | 46 | 12 | 3.5 | 6 | 0.6 | 870 |
Table 8
Comparison of actual drilling effect"
效果指标 | 钻井阶段 | |
---|---|---|
侧钻前 | 侧钻后 | |
施工井段(m) | 3 311~4 748 | 3 580~5 757 |
地层 | 小河坝组、龙马溪组 | 小河坝组、龙马溪组 |
钻井液密度(g/cm3) | 1.26~1.58 | 1.57~1.62 |
高温高压滤失量(mL) | 1.5~2.0 | 0.9~1.0 |
破乳电压(V) | 400~650 | 500~700 |
漏失情况 | 10次,漏失泥浆超过1 200 m3 | 无漏失 |
掉块现象 | 多次出现垮塌,划眼困难 | 偶现少量掉块 |
报废进尺(m) | 1 168 | 无 |
施工期间钻井液日均消耗(m3) | 10~15 | 6~8 |
Table 9
Other field tests"
井号 | 封堵材料配方 | 井深(m) | 使用前 | 使用后 |
---|---|---|---|---|
JY203-2HF | 0.35 %聚硅纤维+ 0.2 %纳米封堵剂 | 4 700 | 钻井液消耗量0.3~0.4 m3/h | 钻井液消耗量降低至0.2~0.3 m3/h;无掉块现象 |
SY2-4HF | 0.5 %聚硅纤维+ 0.2 %纳米封堵剂 | 3 512 | 钻井液消耗量1.3 m3/h;高温高压滤失量2.4 mL | 钻井液消耗量降低至0.8 m3/h;后期密度由1.50 g/cm3缓慢提至1.53 g/cm3,至完井消耗量未出现明显上升的情况;高温高压滤失量降低至1.8 mL;无掉块现象 |
LY1-4HF | 0.25 %聚硅纤维+ 0.2 %纳米封堵剂 | 3 672 | 高温高压滤失量5.2 mL;钻井液消耗量0.5 m3/h;密度1.42 g/cm3 | 高温高压滤失量降低至2.0 mL;钻井液消耗量降低至0.4 m3/h;无掉块现象 |
[1] | 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田, 2011, 18(4):533-537. |
WANG Zhonghua. Research and application progress of oil-based drilling fluid at home and abroad[J]. Fault-Block Oil & Gas Field, 2011, 18(4):533-537. | |
[2] | 潘一, 付龙, 杨双春. 国内外油基钻井液研究现状[J]. 现代化工, 2014, 34(4):21-24. |
PAN Yi, FU Long, YANG Shuangchun. Research progress of oil-based drilling fluid at home and abroad[J]. Modern Chemical Industry, 2014, 34(4):21-24. | |
[3] | 王建华, 李建男, 唐世忠, 等. 页岩气井壁失稳机理及对策研究[C]//中国石油学会. 2013年度全国钻井液完井液技术交流研讨会论文集.北京: 石油工业出版社, 2013:214-220. |
WANG Jianhua, LI Jiannan, TANG Shizhong, et al. Research on the mechanism and countermeasures of shale gas borehole wall instability[C]//China Petroleum Institute. Proceedings of 2013 National Drilling Fluid and Completion Fluid Technology Exchange Symposium. Beijing: Petroleum Industry Press, 2013: 214-220. | |
[4] | 王良, 唐贵, 韩慧芬, 等. 国内页岩储层钻井液技术研究进展[J]. 钻采工艺, 2017, 40(5):22-25. |
WANG Liang, TANG Gui, HAN Huifen, et al. Domestic research on drilling fluid technology for shale reservoir[J]. Drilling & Production Technology, 2017, 40(5):22-25. | |
[5] | 邱正松, 王伟吉, 董兵强, 等. 微纳米封堵技术研究及应用[J]. 钻井液与完井液, 2015, 32(2):6-10. |
QIU Zhengsong, WANG Weiji, DONG Bingqiang, et al. Research and application of micro-nano plugging technology[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):6-10. | |
[6] | ZHANG J, LI L, WANG S W, et al. Novel micro and nano particle-based drilling fluids: Pioneering approach to overcome the borehole instability problem in shale formations[C]// Paper SPE-176991-MS presented at the SPE Asia Pacific Unconventional Resources Conference and Exhibition, 9-11 November, 2015, Brisbane, Australia. |
[7] | 杨丽, 唐清明, 兰林, 等. 一种页岩封堵性评价测试方法[J]. 钻井液与完井液, 2018, 35(5):50-54. |
YANG Li, TANG Qingming, LAN Lin, et al. Method of evaluating sealability of shales[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):50-54. | |
[8] |
BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 1968, 73(6):2225-2236.
doi: 10.1029/JB073i006p02225 |
[9] |
LI W Q, JIANG G C, NI X X, et al. Styrene butadiene resin/nano-SiO2 composite as a water-and-oil-dispersible plugging agent for oil-based drilling fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606:125245.
doi: 10.1016/j.colsurfa.2020.125245 |
[10] | 唐国旺, 于培志. 油基钻井液随钻堵漏技术与应用[J]. 钻井液与完井液, 2017, 34(4):32-37. |
TANG Guowang, YU Peizhi. Mud loss control while drilling with oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):32-37. | |
[11] | 唐国旺. 油基钻井液处理剂的研究与体系构建[D]. 北京:中国地质大学(北京),2018. |
TANG Guowang. Research of oil based drilling fluid treatment agent and structure of system[D]. Beijing: China University of Geosciences(Beijing), 2018. | |
[12] | 梁文利. 深层页岩气油基钻井液承压堵漏技术[J]. 钻井液与完井液, 2018, 35(3):37-41. |
LIANG Wenli. Enhancing pressure bearing capacity of formation to control mud losses in deep shale gas drilling with oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):37-41. | |
[13] | 李红梅, 申峰, 吴金桥, 等. 新型油基钻井液堵漏剂性能[J]. 钻井液与完井液, 2016, 33(2):41-44. |
LI Hongmei, SHEN Feng, WU Jinqiao, et al. Study on performance of a new oil base mud lost circulation material[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):41-44. | |
[14] | 舒曼, 赵明琨, 许明标. 涪陵页岩气田油基钻井液随钻堵漏技术[J]. 石油钻探技术, 2017, 45(3):21-26. |
SHU Man, ZHAO Mingkun, XU Mingbiao. Plugging while drilling technology using oil-based drilling fluid in Fuling shale gas field[J]. Petroleum Drilling Techniques, 2017, 45(3):21-26. | |
[15] | 许明标, 赵明琨, 侯珊珊, 等. 油基桥架堵漏剂的研究与应用[J]. 断块油气田, 2018, 25(6):799-802. |
XU Mingbiao, ZHAO Mingkun, HOU Shanshan, et al. Research and application of oil-based bridge plugging agent[J]. Fault-Block Oil & Gas Field, 2018, 25(6):799-802. | |
[16] | 路宗羽, 徐生江, 叶成, 等. 准噶尔南缘膏泥岩地层高密度防漏型油基钻井液研究[J]. 油田化学, 2018, 35(1):1-7. |
LU Zongyu, XU Shengjiang, YE Cheng, et al. High density and leak proof oil based drilling fluids for mudstone stratum in southern Junggar[J]. Oilfield Chemistry, 2018, 35(1):1-7. | |
[17] | 张志磊, 胡百中, 卞维坤, 等. 昭通页岩气示范区井漏防治技术与实践[J]. 钻井液与完井液, 2020, 37(1):38-45. |
ZHANG Zhilei, HU Baizhong, BIAN Weikun, et al. Mud loss control techniques and practices in Zhaotong demonstration zone of shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):38-45. | |
[18] | 张海军, 彭勇. 常规堵漏方法在塔河油田托普台区块易漏层位的堵漏运用[J]. 西部探矿工程, 2016, 28(7):81-83. |
ZHANG Haijun, PENG Yong. Application of conventional plugging methods in the leaky layer in Tuoputai block of Tahe Oilfield[J]. West-China Exploration Engineering, 2016, 28(7):81-83. | |
[19] | 王骁男. 塔河油田二叠系井壁失稳机理及防塌强抑制钻井液体系研究[D]. 北京:中国地质大学(北京), 2019. |
WANG Xiaonan. Study on borehole wall instability mechanism of Permian in Tahe oil field and development of drilling fluid with strong anti-collapse and restraint[D]. Beijing: China University of Geosciences(Beijing), 2019. | |
[20] | 宋保健, 孙凯, 乐守群, 等. 涪陵页岩气田钻井提速难点与对策分析[J]. 钻采工艺, 2019, 42(4):9-12. |
SONG Baojian, SUN Kai, YUE Shouqun, et al. Drilling acceleration challenges at Fuling shale gas field and solutions[J]. Drilling & Production Technology, 2019, 42(4):9-12. |
[1] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[2] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[3] | GAO Quanfang,ZHANG Peixian,GUAN Linlin,LI Yanjing,NI Feng. Influence of lower-level reverse faults on shale gas enrichment and high yield: A case study of Pingqiao Dong-1 Fault in Nanchuan area, southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 458-467. |
[4] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[5] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[6] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[7] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[8] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[9] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[10] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[11] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[12] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[13] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[14] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[15] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
|