Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 629-637.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.013
• Field Application • Previous Articles Next Articles
LI Xuebin1(),JIN Lixin1,CHEN Chaofeng1,YU Tianxi2,XIANG Yingjie1,YI Duo3
Received:
2023-10-11
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Xuebin LI,Lixin JIN,Chaofeng CHEN, et al. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637.
Table 1
Fracturing operation data of Well-C3154 and Well-C3163 in Jurassic Xishanyao Formation of Baijiahai area, Junggar Basin"
井名 | 井段/ m | 射孔 位置 | 压裂液 类型 | 施工排量/ (m3/min) | 压裂液量/m3 | 加砂量/ m3 | 施工压力/ MPa | 停泵压力/ MPa | 日产气/ m3 |
---|---|---|---|---|---|---|---|---|---|
C3154井 | 2 422~2 434 | 夹矸层 | 胍胶 | 3~4 | 551.7 | 40.0 | 36~50 | 22.0 | 0 |
C3163井 | 2 431~2 435 | 下煤岩层 | 胍胶 | 3~4 | 387.2 | 23.2 | 20~58 | 41.2 | 800 |
Table 2
Fracturing effect data of Jurassic Xishanyao Formation coal reservoir in Baijiahai area, Junggar Basin"
井号 | 井段/m | 煤层 厚度/m | 压裂工艺 | 压裂液 类型 | 压裂 液量/m3 | 设计 加砂量/m3 | 现场 加砂量/m3 | 施工排量/ m3/min | 日产气/ m3 | 试产 时间/d | 压裂 时间 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
彩504井 | 2 567~2 583 | 16 | 油管压裂 | 胍胶液 | 171.4 | 30 | 14.5 | 3.5 | 7 200~2 100 | 120 | 2005年 | 施工压力爬升, 未完成加砂 |
彩512井 | 2 614~2 619 | 5 | 套管压裂 | 活性水+ 清洁压裂液 | 551.0 | 35 | 35.0 | 8.0~10.0 | 1 540~0 | 18 | 2013年 | 产气10 d后停喷 |
彩514井 | 2 516~2 521 | 5 | 油管压裂 | 胍胶液 | 440.0 | 40 | 40.0 | 4.0~5.5 | 2 300~2 080 | 78 | 2018年 | 施工压力爬升, 完成加砂 |
C3163井 | 2 431~2 435 | 4 | 油管压裂 | 胍胶液 | 387.2 | 40 | 23.2 | 2.0~4.0 | 800 | 17 | 2020年 | 施工压力爬升, 未完成加砂 |
[1] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
[2] | 徐凤银. 深部煤层气助力产业发展进入新阶段[J]. 石油知识, 2023(4): 4-6. |
XU Fengyin. The development of deep coalbed methane is entering a new stage, boosting the industry[J]. Petroleum Knowledge, 2023(4): 4-6. | |
[3] | 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9(4): 1-8. |
ZHANG Yi, ZHU Guanghui, ZHENG Qiugen, et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 2022, 9(4): 1-8. | |
[4] | 蒋雪梅, 李晓红, 孙晓艳, 等. ISO天然气分析标准对煤层气分析的适应性研讨[J]. 石油与天然气化工, 2022, 51(2): 103-109. |
JIANG Xuemei, LI Xiaohong, SUN Xiaoyan, et al. Study on applicability of ISO natural gas analysis standards applied in coalbed methane analysis[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 103-109. | |
[5] | 李国永, 姚艳斌, 王辉, 等. 鄂尔多斯盆地神木-佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 70-80. |
LI Guoyong, YAO Yanbin, WANG Hui, et al. Deep coalbed methane resources in the Shenmu-Jiaxian block, Ordos Basin, China: Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 70-80. | |
[6] | 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91. |
GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 81-91. | |
[7] | 胡秋嘉, 李梦溪, 贾慧敏, 等. 沁水盆地南部高煤阶煤层气水平井地质适应性探讨[J]. 煤炭学报, 2019, 44(4): 1178-1187. |
HU Qiujia, LI Mengxi, JIA Huimin, et al. Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui Basin[J]. Journal of China Coal Society, 2019, 44(4): 1178-1187. | |
[8] | 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探, 2022, 50(3): 30-41. |
YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3): 30-41. | |
[9] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. | |
[10] | 曾雯婷, 徐凤银, 张雷, 等. 鄂尔多斯盆地东缘深部煤层气排采工艺技术进展与启示[J]. 煤田地质与勘探, 2024, 52(2): 23-32. |
ZENG Wenting, XU Fengyin, ZHANG Lei, et al. Deep coalbed methane production technology for the eastern margin of the Ordos Basin: Advances and their implications[J]. Coal Geology & Exploration, 2024, 52(2): 23-32. | |
[11] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
|
[12] |
郭绪杰, 支东明, 毛新军, 等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
GUO Xujie, ZHI Dongming, MAO Xinjun, et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
|
[13] | 叶建平, 侯淞译, 张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探, 2022, 50(3): 15-22. |
YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3): 15-22. | |
[14] | 倪方杰. 白家海凸起深层煤层气压裂试气实践与认识[J]. 江汉石油职工大学学报, 2019, 32(5): 36-38. |
NI Fangjie. Practice and understanding of deep CBM fracturing gas testing in Baijiahai uplift[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(5): 36-38. | |
[15] | 聂志宏, 徐凤银, 时小松, 等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探, 2024, 52(2): 1-12. |
NIE Zhihong, XU Fengyin, SHI Xiaosong, et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 1-12. | |
[16] | 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415. | |
[17] | 苏育飞, 宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质, 2023, 35(5): 46-57. |
SU Yufei, SONG Ru. Study on geological characteristics of deep CBM in Yushewu block, Qinshui Basin and evaluation of transformability[J]. Coal Geology of China, 2023, 35(5): 46-57. | |
[18] | 李五忠, 孙斌, 孙钦平, 等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报, 2016, 41(1): 67-71. |
LI Wuzhong, SUN Bin, SUN Qinping, et al. Analysis on coal-bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society, 2016, 41(1): 67-71. | |
[19] |
徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682.
doi: 10.11698/PED.20220856 |
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682.
doi: 10.11698/PED.20220856 |
|
[20] |
刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策——以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839.
doi: 10.7623/syxb202311006 |
LIU Jianzhong, Zhu Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839.
doi: 10.7623/syxb202311006 |
|
[21] | 易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(增刊2): 706-716. |
YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(suppl. 2): 706-716. | |
[22] | ZHOU S, ZHUANG X, RABCZUK T. Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102523. |
[23] | ZHOU S, ZHUANG X, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240: 189-203. |
[24] |
赵金洲, 彭瑀, 林啸, 等. 考虑复杂应力分布的数值缝宽计算模型及其应用[J]. 石油学报, 2016, 37(7): 914-920.
doi: 10.7623/syxb201607010 |
ZHAO Jinzhou, PENG Yan, LIN Xiao, et al. Numerical fracture width model considering complex stress distribution and its application[J]. Acta Petrolei Sinica, 2016, 37(7): 914-920.
doi: 10.7623/syxb201607010 |
|
[25] | 罗伟疆, 宁崇如, 黄凯. 煤层气压裂液研究现状及其展望[J]. 中国煤层气, 2023, 20(3): 30-35. |
LUO Weijiang, NING Chongru, HUANG Kai. Current situation and prospect of research on coalbed methane fracturing fluid[J]. China Coalbed Methane, 2023, 20(3): 30-35. | |
[26] | 张亚东, 吴文刚, 敬显武, 等. 适用于致密气藏的可变黏压裂液体系性能评价及现场应用[J]. 石油与天然气化工, 2022, 51(1): 73-77. |
ZHANG Yadong, WU Wengang, JING Xianwu, et al. Performance evaluation and field application of variable viscosity fracturing fluid system for tight gas reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(1): 73-77. | |
[27] | 向超, 陈力力, 徐莹莹, 等. 一种新型压裂液纳米助排剂的研制及性能评价[J]. 石油与天然气化工, 2022, 51(3): 71-75. |
XIANG Chao, CHEN Lili, XU Yingying, et al. Development and performance evaluation of a new nano-drainage aid for fracturing fluid[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 71-75. | |
[28] | 陈天, 易远元, 李甜甜, 等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工, 2023, 43(9): 6-10. |
CHEN Tian, YI Yuanyuan, LI Tiantian, et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry, 2023, 43(9): 6-10. | |
[29] | 刘剑辉. 吐哈油田煤层气压裂新技术探索及应用[J]. 西部探矿工程, 2018, 30(3): 28-31. |
LIU Jianhui. Exploration and application of new fracturing technologies in Tuha Oilfield's coalbed methane[J]. West-China Exploration Engineering, 2018, 30(3): 28-31. | |
[30] | 李小刚, 舒鸫锟, 张平, 等. 煤层压裂缝内支撑剂输送物理模拟研究[J]. 油气藏评价与开发, 2020, 10(4): 39-44. |
LI Xiaogang, SHU Dongkun, ZHANG Ping, et al. Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4): 39-44. | |
[31] | 徐宝恒, 郭大立. 大规模缝网压裂在深部煤层气中的应用[J]. 河南科技, 2023, 42(19): 81-84. |
XU Baoheng, GUO Dali. Application of large-scale fracture network fracturing in deep coalbed methane[J]. Henan Science and Technology, 2023, 42(19): 81-84. |
[1] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[2] | WANG Pengxiang, ZHANG Zhou, YU Wanying, ZOU Qiang, YANG Zhengtao. Characteristics of pore-fracture structure and three-dimensional spatial distribution differences in deep and shallow coal reservoirs: A case study of Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 227-236. |
[3] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[4] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[5] | CHAI Nina, LI Jiarui, ZHANG Liwen, WANG Junjie, LIU Yapeng, ZHU Lun. Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 124-130. |
[6] | ZHANG Zhang, MENG Peng, YANG Wei, ZHANG Xiaolong, HUANG Qi, WANG Haoran. Characterization of braided river reservoir architecture based on seismic attribute stacking ensemble learning: A case study of the C-2 oilfield in the Bohai Bay Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 64-72. |
[7] | YUAN Lina, WANG Guangtao, WANG Chengwang, HOU Rui, SUN Feng. Study on influence of bedding on hydraulic fracture propagation morphologies in Jurassic reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 908-917. |
[8] | KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932. |
[9] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[10] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[11] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[12] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[13] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[14] | ZHANG Jiawei, LIU Xiangjun, XIONG Jian, LIANG Lixi, REN Jianfei, LIU Baiqu. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667. |
[15] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
|