Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 571-578.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.005
• Methodological Theory • Previous Articles Next Articles
Received:
2024-05-05
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
WU Xiao,LIU Runchang. Variation characteristics of physical properties and pore-throat structure of carbonate rocks under the influence of CO2[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 571-578.
Table 1
Experimental parameters and basic characteristics of rock samples for CO2-water-rock reactions"
岩样编号 | 长度/cm | 直径/cm | 干重/g | 孔隙度/% | 渗透率/10-3 μm2 | CO2体积分数/% |
---|---|---|---|---|---|---|
M1 | 3.97 | 2.51 | 48.58 | 12.22 | 0.010 0 | 0 |
M2 | 3.97 | 2.51 | 49.16 | 11.54 | 0.009 2 | 20 |
M3 | 3.97 | 2.51 | 52.97 | 11.04 | 0.010 6 | 40 |
M4 | 3.98 | 2.52 | 52.35 | 10.51 | 0.009 5 | 70 |
M5 | 3.98 | 2.52 | 51.76 | 10.12 | 0.009 0 | 100 |
Table 2
Potential chemical reactions in CO2-formation water-rock mineral system"
原始矿物 | 反应方程式 | 产出物 |
---|---|---|
方解石 | CaCO3+H+→Ca2++HCO![]() | 钙离子 |
白云石 | CaMg(CO3)2+2H+→Ca2++Mg2++2HCO![]() | 钙离子、镁离子 |
钠长石 | 2NaAlSi3O8+3H2O+2CO2→Al2Si2O5(OH)4+2Na++4SiO2+2HCO![]() | 石英、高岭石 |
钾长石 | 2KAlSi3O8+2H++9H2O→Al2Si2O5(OH)4+2K++4H4SiO4 | 高岭石、正硅酸 |
钙长石 | CaAl2Si2O8+H2CO3+H2O→CaCO3+Al2Si2O5(OH)4 | 高岭石、碳酸钙 |
[1] | AMINU M D, ROCHELLE C A, NABAVI S A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419. |
[2] | 胡书勇, 郭学强, 张佳轶, 等. 双碳愿景下CCUS提高油气采收率技术[J]. 世界石油工业, 2024, 31(1): 81-91. |
HU Shuyong, GUO Xueqiang, ZHANG Jiayi, et al. CCUS improves oil and gas recovery technology under the vision of carbon neutral and carbon peak[J]. World Petroleum Industry, 2024, 31(1): 81-91. | |
[3] | 中国二氧化碳地质封存环境风险研究组. 中国二氧化碳地质封存环境风险评估[M]. 北京: 化学工业出版社, 2018. |
China CO 2 Geological Storage Environmental Risk Research Group. Environmental risk assessment of CO2 geological storage in China[M]. Beijing: Chemical Industry Press, 2018. | |
[4] | KORBØL R, KADDOUR A. Sleipner vest CO2 disposal-injections of removed CO2 into the Utsira formation[J]. Energy Conversion and Management, 1995, 36(6-9): 509-512. |
[5] | HOVORKA S D, BENSON S M, DOUGHTY C, et al. Measuring permanence of CO2 storage in saline formations: The Frio experiment[J]. Environmental Geosciences, 2006, 13(2): 105-121. |
[6] | LIN R, YU Z H, ZHAO J Z, et al. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2-Brine-Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China[J]. Fuel, 2022, 309: 122167. |
[7] | 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095. |
DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095. | |
[8] | FOROUTAN M, GHAZANFARI E, AMIRLATIFI A, et al. Variation of pore-network, mechanical and hydrological characteristics of sandstone specimens through CO2-enriched brine injection[J]. Geomechanics for Energy and the Environment, 2021, 26: 100217. |
[9] | KREVOR S C M, PINI R, ZUO L, et al. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions[J]. Water Resources Research, 2012, 48(2): W010859. |
[10] | WANG H, ALVARADO V, BAGDONAS D A, et al. Effect of CO2-brine-rock reactions on pore architecture and permeability in dolostone: Implications for CO2 storage and EOR[J]. International Journal of Greenhouse Gas Control, 2021, 107: 103283. |
[11] | 王广华, 赵静, 张凤君, 等. 砂岩储层中CO2-地层水-岩石的相互作用[J]. 中南大学学报(自然科学版), 2013, 44(3): 1167-1173. |
WANG Guanghua, ZHAO Jing, ZHANG Fengjun, et al. Interactions of CO2-brine-rock in sandstone reservoir[J]. Journal of Central South University(Science and Technology), 2013, 44(3): 1167-1173. | |
[12] | ROSS G, TODD A, TWEEDIE J, et al. The dissolution effects of CO2-Brine systems on the permeability of U. K. and North Sea calcareous sandstones[J]. Society of Petroleum Engineers (SPE) Enhanced Oil Recovery Symposium, 1982: 10685. |
[13] | SHIRAKI R, DUNN T. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry, 2000, 15(3): 265-279. |
[14] | 于志超, 杨思玉, 刘立, 等. 饱和CO2地层水驱过程中的水-岩相互作用实验[J]. 石油学报, 2012, 33(6): 1032-1042. |
YU Zhichao, YANG Siyu, LIU Li, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2 [J]. Acta Petrolei Sinica, 2012, 33(6): 1032-1042. | |
[15] | WU S T, ZOU C N, MA D S, et al. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone: Implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2019, 179: 200-210. |
[16] | 袁舟, 廖新维, 赵晓亮, 等. 砂岩油藏CO2驱替过程中溶蚀作用对储层物性的影响[J]. 油气地质与采收率, 2020, 27(5): 97-104. |
YUAN Zhou, LIAO Xinwei, ZHAO Xiaoliang, et al. Effect of dissolution on physical properties of sandstone reservoirs during CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 97-104. | |
[17] | 彭东宇, 唐洪明, 王子逸, 等. 致密砾岩储层与CO2作用机理及控制因素实验研究[J]. 油气地质与采收率, 2023, 30(2): 94-103. |
PENG Dongyu, TANG Hongming, WANG Ziyi, et al. Experimental study on reaction mechanism between tight conglomerate reservoir and CO2 and its controlling factors[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 94-103. | |
[18] | CUI G D, WANG Y, RUI Z H, et al. Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers[J]. Energy, 2018, 155: 281-296. |
[19] | YANG L L, SONG Z Y, LIU Y, et al. Differences in CO2-water-rock chemical reactions among “sweet spot” reservoirs: Implications for carbon sequestration[J]. Acta Geologica Sinica(English Edition), 2023, 97(3): 972-985. |
[20] | 赵玉龙, 杨勃, 曹成, 等. 盐水层CO2封存潜力评价及适应性评价方法研究进展[J]. 油气藏评价与开发, 2023, 13(4): 484-494. |
ZHAO Yulong, YANG Bo, CAO Cheng, et al. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494. | |
[21] | 董利飞, 董文卓, 张旗, 等. 咸水层中CO2溶解性能预测方法优选[J]. 油气藏评价与开发, 2024, 14(1): 35-41. |
DONG Lifei, DONG Wenzhuo, ZHANG Qi, et al. Optimal prediction method for CO2 solubility in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41. | |
[22] | 李颖, 马寒松, 李海涛, 等. 超临界CO2对碳酸盐岩储层的溶蚀作用研究[J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
LI Ying, MA Hansong, LI Haitao, et al. Dissolution of supercritical CO2 on carbonate reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. | |
[23] | 谢健, 赵可英, 曾小雪. CO2地质封存机理——从实验研究角度综述[J]. 新能源进展, 2016, 4(2): 132-138. |
XIE Jian, ZHAO Keying, ZENG Xiaoxue. A review of laboratory investigation for mechanisms of CO2 capture and geologic storage(CCGS)[J]. Advances in New and Renewable Energy, 2016, 4(2): 132-138. | |
[24] | SUN Y K, LI Q, YANG D X, et al. Laboratory core flooding experimental systems for CO2 geosequestration: An updated review over the past decade[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 113-126. |
[25] | LI A, REN X X, WANG G, et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum(Natural Science Edition), 2015, 39(6): 92-98. |
[26] | SARAF S, BERA A. A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110986. |
[1] | ZHANG Chao, ZHU Pengyu, HUANG Tianjing, YAN Changhao, LIU Jie, WANG Bo, ZHANG Bin, ZHANG Yi. Study on the influence of CO2-water-rock reactions under reservoir conditions on geochemical properties of sandstone reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 545-553. |
[2] | ZHANG Ruihan, HU Bo, PENG Xian, ZHANG Fei, WANG Yongchao, ZHAO Yulong. Study on diffusion patterns of multi-component systems in porous media of carbonate gas storage [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 564-570. |
[3] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[4] | HU Wenge, MA Longjie, WANG Yan, BAO Dian, ZHANG Yun. Application and reflections on efficient development of deep oil and gas reservoirs in Tarim Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 519-528. |
[5] | ZHANG Wen,LIANG Lixi,LIU Xiangjun,XIONG Jian,ZHANG Yinan. Etching morphology and mechanical properties of carbonate rocks under acid action [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 247-255. |
[6] | DONG Lifei, DONG Wenzhuo, ZHANG Qi, ZHONG Pinzhi, WANG Miao, YU Bo, WEI Haiyu, YANG Chao. Optimal prediction method for CO2 solubility in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41. |
[7] | ZHAO Yulong, YANG Bo, CAO Cheng, ZHANG Liehui, ZHOU Xiang, HUANG Chenzhi, RUI Yiming, LI Jinlong. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494. |
[8] | LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. |
[9] | SHEN Xin,GUO Jianchun,WANG Shibin. Acidification retardation caused by shielding of cationic surfactants [J]. Reservoir Evaluation and Development, 2023, 13(1): 117-126. |
[10] | ZHAO Peirong. Reservoir characteristics and gas exploration potential of Permian Mao-1 Member of Maokou Formation in Jiaoshiba Area [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 772-781. |
[11] | XIA Wei,CAI Xiao,DING Anxu,LI Hui. Reservoir spaces of carbonate rocks in Qixia-Maokou Formation of Nanchuan area [J]. Reservoir Evaluation and Development, 2021, 11(2): 197-203. |
[12] | ZHANG Bingyan,CHEN Xiaofan,YUE Ping. Research on unit mining by elastic drive of fractured-vuggy carbonate reservoir with bottom water by water intrusion [J]. Reservoir Evaluation and Development, 2020, 10(2): 71-75. |
[13] | YANG Zhaozhong,DENG Zhuang,YU Mengnan,LI Xiaogang,HE Rui,HUANG He. Experimental research on growth mechanism of acid wormhole in carbonate matrix [J]. Reservoir Evaluation and Development, 2020, 10(2): 24-29. |
[14] | HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. |
[15] | Jin Yangjun,Chen Nai'an,Sheng Yi,Xu Yanmei,Wang Junliang,Pan Zhiyan. Study on the solubility of CO2 in simulated saline solution under geological storage condition [J]. Reservoir Evaluation and Development, 2019, 9(3): 77-81. |
|