Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (1): 56-61.doi: 10.13809/j.cnki.cn32-1825/te.2021.01.008
• Shale Gas Exploration • Previous Articles Next Articles
Lin Haiyu(),Xiong Jian(
),Liu Xiangjun
Received:
2020-04-23
Online:
2021-02-04
Published:
2021-02-26
Contact:
Xiong Jian
E-mail:949757171@qq.com;361184163@qq.com
CLC Number:
Haiyu Lin,Jian Xiong,Xiangjun Liu. Study on isothermal desorption characteristics of methane in shale from Longmaxi Formation in South Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(1): 56-61.
Table 2
Model fitting parameters"
页岩样品 | Langmuir | Freundlich | 解吸式 | Weibull | D-A方程 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VL | pL | K | x | VL | pL | C | VL | b | q | Vo | D | m | k | |||||
1号 | 4.040 | 2.299 | 1.539 | 0.322 | 4.040 | 2.299 | 0.001 | 3.531 | 0.420 | 0.816 | 3.517 | 0.204 | 1.599 | 2.175 | ||||
2号 | 4.354 | 2.363 | 1.509 | 0.359 | 4.250 | 2.832 | 0.211 | 3.877 | 0.408 | 0.780 | 3.859 | 0.227 | 1.509 | 2.258 | ||||
文献[ | 1.875 | 1.367 | 0.872 | 0.316 | 1.870 | 1.380 | 0.007 | 1.791 | 0.609 | 0.645 | 1.584 | 0.256 | 1.364 | 0.846 | ||||
文献[ | 2.741 | 1.016 | 1.526 | 0.229 | 2.732 | 1.024 | 0.011 | 2.741 | 0.733 | 0.535 | 2.503 | 0.171 | 1.422 | 1.384 | ||||
文献[ | 3.517 | 5.039 | 0.905 | 0.391 | 3.598 | 4.614 | 0.118 | 2.627 | 0.111 | 1.454 | 2.645 | 0.149 | 2.637 | 2.664 |
Table 3
Fitting effect of each model"
页岩样品 | Langmuir方程 | Freundlich方程 | 解吸式方程 | Weibull方程 | D-A方程 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | E | R2 | E | R2 | E | R2 | E | R2 | E | |||||
1号 | 0.996 85 | 2.22 | 0.973 08 | 7.41 | 0.996 85 | 2.22 | 0.998 66 | 1.69 | 0.997 95 | 1.66 | ||||
2号 | 0.993 75 | 2.11 | 0.947 31 | 7.08 | 0.995 18 | 2.00 | 0.997 39 | 1.42 | 0.995 38 | 1.89 | ||||
文献[ | 0.997 06 | 1.35 | 0.993 92 | 2.12 | 0.997 09 | 1.35 | 0.998 41 | 1.25 | 0.998 90 | 0.99 | ||||
文献[ | 0.997 10 | 1.50 | 0.994 58 | 2.09 | 0.997 12 | 1.49 | 0.999 40 | 0.70 | 0.999 70 | 0.49 | ||||
文献[ | 0.967 40 | 9.31 | 0.915 25 | 14.95 | 0.969 27 | 8.69 | 0.999 84 | 0.48 | 0.998 82 | 1.59 |
[1] | 刘朝全, 姜学峰. 2018年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2019. |
Liu Chaoquan, Jiang Xuefeng. Development report of domestic and foreign oil and gas industry in 2018[M]. Beijing: CNPC Economics & Technology Research Institute, 2019. | |
[2] | Energy Information Administration. Technically recoverable shale gas and shale oil resources: China[R]. Washington: EIA, 2015. |
[3] | 张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J]. 天然气工业, 2008,28(2):151-156. |
Zhang Jinchuan, Nie Haikuan, Xu Bo, et al. Geological condition of shale gas accumulation in Sichuan basin[J]. Natural Gas Industry, 2008,28(2):151-156. | |
[4] | 高和群, 曹海虹, 曾隽. 页岩气解吸规律新认识[J]. 油气地质与采收率, 2019,26(2):81-86. |
Gao Hequn, Cao Haihong, Zeng Jun. New understanding of shale gas desorption law[J]. Petroleum Geology and Recovery Efficiency, 2019,26(2):81-86. | |
[5] |
Heller R, Zoback M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014,8:14-24.
doi: 10.1016/j.juogr.2014.06.001 |
[6] | Zou Jie, Reza Rezaee, Quan Xie, et al. Characterization of the combined effect of high temperature and moisture on methane adsorption in shale gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019,182. |
[7] | 熊健, 刘向君, 梁利喜. 页岩中超临界甲烷等温吸附模型研究[J]. 石油钻探技术, 2015,43(3):96-102. |
Xiong Jian, Liu Xiangjun, Liang Lixi. Isothermal adsorption model of supercritical methane in shale[J]. Petroleum Drilling Techniques, 2015,43(3):96-102. | |
[8] | 高永利, 李腾, 关新, 等. 基于重量法的页岩气高压等温吸附研究[J]. 石油实验地质, 2018,40(4):566-572. |
Gao Yongli, Li Teng, Guan Xin, et al. Mass method adsorption characteristics of shale gas under high pressure[J]. Petroleum Geology & Experiment, 2018,40(4):566-572. | |
[9] | 王曦蒙, 刘洛夫, 汪洋, 等. 川南地区龙马溪组页岩高压甲烷等温吸附特征[J]. 天然气工业, 2019,39(12):32-39. |
Wang Ximeng, Liu Lofu, Wang Yang, et al. High-pressure isothermal methane adsorption characteristic of Longmaxi Formation shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(12):32-39. | |
[10] | 郭为, 熊伟, 高树生, 等. 页岩气等温吸附/解吸特征[J]. 中南大学学报(自然科学版), 2013,44(7):2836-2840. |
Guo Wei, Xiong Wei, Gao Shusheng, et al. Isothermal adsorption/desorption characteristics of shale gas[J]. Journal of Central South University(Science and Technology), 2013,44(7):2836-2840. | |
[11] | 马东民, 曹石榴, 李萍, 等. 页岩气与煤层气吸附/解吸热力学特征对比[J]. 煤炭科学技术, 2015,43(2):64-67. |
Ma Dongmin, Cao Shiliu, Li Ping, et al. Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane[J]. Coal Science and Technology, 2015,43(2):64-67. | |
[12] | 关富佳, 张杰, 王海涛, 等. 川东龙马溪组页岩解吸滞后现象实验研究[J]. 西安石油大学学报(自然科学版), 2017,32(1):71-74. |
Guan Fujia, Zhang Jie, Wang Haitao, et al. Experimental study on desorption hysteresis of Longmaxi Formation Shale in Eastern Sichuan[J]. Journal of Xi’an Shiyou University(Natural Science), 2017,32(1):71-74. | |
[13] | Kong Shaoqi, Huang Xing, Li Kunjie, et al. Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples[J]. Fuel, 2019,255. |
[14] | Liu Yueliang, Huaz hou Andy Li, Tian Yuanyuan, et al. Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective[J]. Fuel, 2018(218):67-77. |
[15] | 马东民, 韦波, 蔡忠勇. 煤层气解吸特征的实验研究[J]. 地质学报, 2008,82(10):1432-1436. |
Ma Dongmin, Wei Bo, Cai Zhongyong. Experimental study of coalbed methane desorption[J]. Acta Geologica Sinica, 2008,82(10):1432-1436. | |
[16] | 马东民, 张遂安, 蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011,36(3):477-480. |
Ma Dongmin, Zhang Sui’an, Lin Yabin. Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J]. Journal of China Coal Society, 2011,36(3):477-480. | |
[17] | 蔡进, 马中飞, 李立夫. 煤体瓦斯解吸模型验证分析[J]. 煤矿安全, 2016,47(9):176-179. |
Cai Jin, Ma Zhongfei, Li Lifu. Check analysis for coal gas desorption model[J]. Safety in Coal Mines, 2016,47(9):176-179. | |
[18] | 吴靖, 胡宗全, 谢俊, 等. 四川盆地及周缘五峰组—龙马溪组页岩有机质宏微观赋存机制[J]. 天然气工业, 2018,38(8):23-32. |
Wu Jing, Hu Zongquan, Xie Jun, et al. Macro-micro occurrence mechanism of organic matters in Wufeng-Longmaxi shale in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2018,38(8):23-32. | |
[19] |
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918,40(9):1361-1403.
doi: 10.1021/ja02242a004 |
[20] | 杨峰, 宁正福, 孔德涛, 等. 页岩甲烷吸附等温线拟合模型对比分析[J]. 煤炭科学技术, 2013,41(11):86-89. |
Yang Feng, Ning Zhengfu, Kong Detao, et al. Comparison analysis on model of methane adsorption isotherms in shales[J]. Coal Science and Technology, 2013,41(11):86-89. | |
[21] | Dubinin M M, Astakhov V A. Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents[J]. Bulletin of the Academy of Sciences of the USSR(Division of Chemical Science), 1971,20(1):3-7. |
[22] |
Amankwah K A G, Schwarz J A. A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation[J]. Carbon, 1995,33(9):1313-1319.
doi: 10.1016/0008-6223(95)00079-S |
[23] | 蒋必辞, 汪凯斌, 陈刚, 等. 基于Weibull方程的煤层气动态解吸过程划分[J]. 煤矿安全, 2018,49(1):44-48. |
Jiang Bici, Wang Kaibin, Chen Gang, et al. Division of coalbed methane dynamic desorption process based on Weibull equation[J]. Safety in Coal Mines, 2018,49(1):44-48. | |
[24] | 孟艳军, 汤达祯, 许浩, 等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发, 2014,41(5):612-617. |
Meng Yanjun, Tang Dazhen, Xu Hao, et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development, 2014,41(5):612-617. | |
[25] | 岳长涛, 李术元, 李林玥, 等. 页岩气等温解吸特性研究[J]. 现代地质, 2017,31(1):150-157. |
Yue Changtao, Li Shuyuan, Li Linyue, et al. Study on desorption properties of shale gas[J]. Geoscience, 2017,31(1):150-157. |
[1] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[2] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[3] | GAO Quanfang,ZHANG Peixian,GUAN Linlin,LI Yanjing,NI Feng. Influence of lower-level reverse faults on shale gas enrichment and high yield: A case study of Pingqiao Dong-1 Fault in Nanchuan area, southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 458-467. |
[4] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[5] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[6] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[7] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[8] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[9] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[10] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[11] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[12] | LIU Honglin,ZHOU Shangwen,LI Xiaobo. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483. |
[13] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[14] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[15] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
|