Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (1): 95-101.doi: 10.13809/j.cnki.cn32-1825/te.2021.01.013
• Shale Gas Development • Previous Articles Next Articles
Du Yang(),Lei Wei,Li Li,Zhao Zhejun,Ni Jie,Liu Tong
Received:
2020-10-10
Online:
2021-02-04
Published:
2021-02-26
CLC Number:
Yang Du,Wei Lei,Li Li, et al. Post-frac production control and drainage technology of deep shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(1): 95-101.
Table1
Drainage periods and countermeasures"
序号 | 阶段 | 生产表象 | 排采对策 | 阶段目标 |
---|---|---|---|---|
1 | 焖井 | 由停泵压力下降至稳定 | 参考:威荣<5 d;永川7~10 d | 增加裂缝复杂程度,达到渗吸平衡 |
2 | 初期纯排液 | 开井返排至井口见气, 点火并连续燃烧 | 3~5 mm油嘴逐级上调排液, 每级油嘴至少持续3 d | 单相流动控制速度,降低裂缝应力敏感,防止支撑剂回流 |
3 | 见气初期 | 井口见气至产气量快速上升、 井口压力由平稳变为上升阶段 | 5~7 mm逐级上调, 每级油嘴至少持续3 d | 气液两相流动,降低裂缝应力敏感,防止裂缝快速闭合 |
4 | 气相突破 | 产气量快速上升、井口压力 由下降或稳定变为上升 | 7~9 mm快速逐级上调, 每级油嘴持续1~2 d | 气相渗透率大增,基质和缝网供给,减少地层能量损失 |
5 | 稳定测试 | 产气量、井口压力趋于稳定 | 8~10 mm稳定测试,持续稳定5 d | 生产压差稳定,评价气井产能 |
6 | 管输生产 | 测试结束后,进入外输管网生产 | 5~8 mm油嘴配产生产 | 根据产能评价合理配产,及时助排 |
Table 2
Adaptability analysis of artificial lift by self energy"
项目 | 依靠气井自身能量型举升方法 | |||
---|---|---|---|---|
泡排 | 毛细管 | 速度管柱 | 柱塞气举 | |
目前最大排液量(m3/d) | 100 | 40 | 50 | <30 |
目前最大井深(m) | 4 500 | 5 000 | 6 248 | 4 000 |
水平井井身结构适应性 | 适应 | 适应 | 适应 | 适应 |
地面及环境条件 | 无要求 | 装置小,要求低 | 施工对场地要求高 | 井口流程需要改造 |
产气量要求 | 高于临界携泡流量 | 高于临界携泡流量 | 高于管径下的临界携泡流量 | 低,主要是气井压力恢复能力 |
高气液比 | 适应 | 适应 | 适应 | 适应 |
出砂 | 适应 | 可用于解堵 | 适应 | 有除砂柱塞 |
设计难易 | 容易 | 容易 | 容易 | 较易 |
维修管理 | 方便 | 方便 | 方便 | 方便 |
投资成本 | 低 | 较低 | 较低 | 较低 |
运转效率(%) | 100 | 100 | 100 | 100 |
灵活性 | 很好 | 很好 | 不能重复利用 | 很好 |
免修期 | 无 | >1 a | 无 | >1 a |
在页岩气井适应性 | 适应 | 适应 | 适应 | 适应 |
Table 3
Adaptability analysis of artificial lift by replenishing energy"
项目 | 人工补充能量型举升方法 | |||
---|---|---|---|---|
车载气举 | 机抽 | 电潜泵 | 射流泵 | |
目前最大排液量(m3/d) | 可连续排液 | 100 | 1 000 | 300 |
目前最大井深(m) | 3 500 | 2 700 | 4 500 | 3 000 |
水平井井身结构适应性 | 适应 | 受限 | 受限 | 适宜 |
地面及环境条件 | 视井场条件 | 装置大而重,较适宜 | 装置小,适宜高压电源 | 动力源可远离井口,适宜 |
产气量要求 | 无 | 无 | 无 | 无 |
高气液比 | 适应 | 气液分离,较适宜 | 较敏感,较适宜 | 较敏感,较适宜 |
出砂 | 可用于排砂 | 较差 | <0.5 % | 无运动条件,很适宜 |
设计难易 | 容易 | 较易 | 较复杂 | 较复杂 |
维修管理 | 方便 | 不方便 | 不方便 | 不方便 |
投资成本 | 较低 | 较低 | 较高 | 较高 |
运转效率(%) | >95 | <30 | <65 | 最高34 |
灵活性 | 移动性强 | 产量可调 | 变频可调,很好 | 喷嘴可调,很好 |
免修期 | >1 a | 0.5~1 a | ||
在页岩气井适应性 | 适应 | 不适应 | 较适应 | 较适应 |
[1] |
Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China[J]. Energy Geoscience, 2020,1(1-2):55-68.
doi: 10.1016/j.engeos.2020.04.004 |
[2] | Crafton J W. Flowback performance in intensely naturally fractured shale gas reservoirs[C]// paper SPE-131785-MS presented at the SPE Unconventional Gas Conference, 23-25 February, 2010, Pittsburgh, Pennsylvania, USA. |
[3] | Makhanov K, Dehghanpour H, Kuru EH. Measuring liquid uptake of organic shales: A workflow to estimate water loss during shut-in periods[C]// paper SPE-167157-MS presented at the SPE Unconventional Resources Conference Canada, 5-7 November, 2013, Calgary, Alberta, Canada. |
[4] | Yaich E, Williams S, Bowser A, et al. A case study: The impact of soaking on well performance in the Marcellus[C]// paper URTEC-2154766-MS presented at the Unconventional Resources Technology Conference, 20-22 July, 2015, San Antonio, Texas, USA. |
[5] | Makhanov K, Dehghanpour H, Kuru E. An experimental study of spontaneous imbibition in Horn River Shales[C]// paper SPE-162650-MS presented at the SPE Canadian Unconventional Resources Conference, 30 October-1 November, 2012, Calgary, Alberta, Canada. |
[6] | Bertoncello A, Wallace J M, Blyton C, et al. Imbibition and water blockage in unconventional reservoirs: well-management implications during flowback and early production[J]. SPE Reservoir Evaluation & Engineering, 2014,17(4):497-506. |
[7] | 杨海, 李军龙, 石孝志, 等. 页岩气储层压后返排特征及意义[J]. 中国石油大学学报(自然科学版), 2019,43(4):98-105. |
Yang Hai, Li Junlong, Shi Xiaozhi, et al. Characteristics and significance of flow-back processes after fracturing in shale-gas reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019,43(4):98-105. | |
[8] | 蒙冕模, 葛洪魁, 纪文明, 等. 基于核磁共振技术研究页岩自发渗吸过程[J]. 特种油气藏, 2015,22(5):137-140. |
Meng Miaomo, Ge Hongkui, Ji Wenming, et al. NMR Study on Shale Spontaneous Imbibition[J]. Special Oil and Gas Reservoirs, 2015,22(5):137-140. | |
[9] | 杜洋, 雷炜, 李莉, 等. 页岩气井压裂后焖排模式[J]. 岩性油气藏, 2019,31(3):145-151. |
Du Yang, Lei Wei, Li Li, et al. Shut-in and flow-back pattern of fractured shale gas wells[J]. Lithologic Reservoirs, 2019,31(3):145-151. | |
[10] | 肖文联, 张骏强, 杜洋, 等. 页岩带压渗吸核磁共振响应特征实验研究[J]. 西南石油大学学报(自然科学版), 2020,41(6):13-18. |
Xiao Wenlian, Zhang Junqiang, Du Yang, et al. An experimental study on NMR response characteristics of imbibition subjected to pressure in shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020,41(6):13-18. | |
[11] | 游利军, 谢本彬, 杨建, 等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018,38(12):61-69. |
You Lijun, Xie Benbin, Yang Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018,38(12):61-69. | |
[12] | 韩慧芬, 杨斌, 彭钧亮. 压裂后焖井期间页岩吸水起裂扩展研究——以四川盆地长宁区块龙马溪组某平台井为例[J]. 天然气工业, 2019,39(1):74-80. |
Han Huifen, Yang Bin, Peng Junliang. Fracture initiation & propagation in shale due to imbibition during well shut-in after fracturing: A case study from one well platform in Longmaxi Fm of the Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2019,39(1):74-80. | |
[13] | 王良, 马辉运, 韩慧芬, 等. 长宁区块页岩水化起裂机理及应用[J]. 钻采工艺, 2020,43(增):27-30. |
Wang Liang, Ma Huiyun, Han Huifen, et al. Mechanism of shale hydration cracking and application at Changning Block[J]. Drilling & Production Technology, 2020,43(S):27-30. | |
[14] | 张涛, 李相方, 杨立峰, 等. 关井时机对页岩气井返排率和产能的影响[J]. 天然气工业, 2017,37(8):48-59. |
Zhang Tao, Li Xiangfang, Yang Lifeng, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells[J]. Natural Gas Industry, 2017,37(8):48-59. | |
[15] | 潘登, 涂敖, 谢奎. 页岩气地面排采作业初期难点与技术对策[J]. 钻采工艺, 2018,41(6):40-42. |
Pan Deng, Tu Ao, Xie Kui. Difficulties during shale gas well early stage flow back and well testing and technical solutions[J]. Drilling & Production Technology, 2018,41(6):40-42. | |
[16] | 韩慧芬, 王良, 贺秋云, 等. 页岩气井返排规律及控制参数优化[J]. 石油钻采工艺, 2018,40(2):253-260. |
Han Huifen, Wang Liang, He Qiuyun, et al. Flowback laws and control parameter optimization of shale gas wells[J]. Oil Drilling & Production Technology, 2018,40(2):253-260. | |
[17] |
Zhang S F, Sheng J J. Effect of water imbibition on hydration induced fracture and permeability of shale cores[J]. Journal of Natural Gas Science and Engineering, 2017,45:726-737.
doi: 10.1016/j.jngse.2017.06.008 |
[18] | 范宇, 岳圣杰, 李武广, 等. 长宁页岩气田采气工艺实践与效果[J]. 天然气与石油, 2020,38(2):54-60. |
Fan Yu, Yue Shengjie, Li Wuguang, et al. Practice and effect of gas production technology in Changning Shale Gas Field[J]. Natural Gas and Oil, 2020,38(2):54-60. | |
[19] | 曹孟京, 吴晓东, 安永生, 等. 页岩气井连续油管采气管柱优化设计[J]. 断块油气田, 2018,25(6):811-814. |
Cao Mengjing, Wu Xiaodong, An Yongsheng, et al. Optimal design of coiled tubing for production string of gas well in shale gas field[J]. Fault-Block Oil & Gas Field, 2018,25(6):811-814. | |
[20] | 林生茂, 陈家晓, 杨智, 等. 长宁页岩气自动化泡排加注工艺技术研究与应用[J]. 钻采工艺, 2020,43(增):64-67. |
Lin Shengmao, Chen Jiaxiao, Yang Zhi, et al. Research and application on automatic on foam-dewatering gas production technology for Changning Shale Gas Development[J]. Drilling & Production Technology, 2020,43(S):64-67. | |
[21] | 杨智, 陈家晓, 段蕴琦, 等. 页岩气水平井柱塞排采工艺研究与应用[J]. 钻采工艺, 2020,43(增):40-42. |
Yang Zhi, Chen Jiaxiao, Duan Yunqi, et al. Plunger lift technology research and application in horizontal shale gas well[J]. Drilling & Production Technology, 2020,43(S):40-42. | |
[22] |
Zhao Z H, Wu K D, Fan Y, et al. An optimization model for conductivity of hydraulic fracture networks in the Longmaxi shale, Sichuan basin, Southwest China[J]. Energy Geoscience, 2020,1(1-2):47-54.
doi: 10.1016/j.engeos.2020.05.001 |
[23] |
Li Y Z. Mechanics and fracturing techniques of deep shale from the Sichuan Basin, SW China[J]. Energy Geoscience, 2021,2(1):1-9.
doi: 10.1016/j.engeos.2020.06.002 |
[1] | ZHANG Fei, LI Qiuzheng, JIANG Aming, DENG Ci. Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 707-713. |
[2] | TANG Huiying, DI Kaixiang, ZHANG Liehui, GUO Jingjing, ZHANG Tao, TIAN Ye, ZHAO Yulong. Tight oil imbibition based on nuclear magnetic resonance signal calibration method [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 402-413. |
[3] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[4] | XU Guochen,DU Juan,ZHU Mingchen. Practice and understanding of water huff-n-puff in shale oil of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 256-266. |
[5] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[6] | HE Feng,FENG Qiang,CUI Yushi. Production schedule optimization of gas wells in W shale gas reservoir under controlled pressure difference based on numerical simulation [J]. Reservoir Evaluation and Development, 2023, 13(1): 91-99. |
[7] | ZHU Huashu,WANG Xiyong,XU Xiaoling,GUO Zhiliang,HUANG Hechun. Extendability limit of engineering drilling in long horizontal section of Weirong deep shale gas [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 506-514. |
[8] | DU Yang,NI Jie,LEI Wei,ZHOU Xingfu,LI Li,BU Tao. Optimum time of tubing installation in deep shale gas wells of Weirong [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 526-533. |
[9] | YANG Yubin,XIAO Wenlian,HAN Jian,GOU Ling,LI Min,ZHOU Keming,OUYANG Mukun,CHEN Li. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang Gas Field [J]. Reservoir Evaluation and Development, 2022, 12(2): 356-364. |
[10] | FAN Xibin,PU Wanfen,SHAN Jiangtao,DU Daijun,QIN Jianhua,GAO Yang. Feasibility of enhanced oil recovery by CO2 huff-n-puff in tight conglomerate reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 831-836. |
[11] | YANG Jian,ZHAN Guowei,ZHAO Yong,REN Chunyu,QU Chongjiu. Characteristics of supercritical adsorption and desorption of deep shale gas in South Sichuan [J]. Reservoir Evaluation and Development, 2021, 11(2): 184-189. |
[12] | ZHOU Hua,WEI Limin,WANG Tong,WANG Yan,PANG Heqing,ZHANG Tiancao. Evaluation method of Weirong deep shale gas reservoir and its application [J]. Reservoir Evaluation and Development, 2021, 11(2): 176-183. |
[13] | XIONG Liang,PANG Heqing,ZHAO Yong,WEI Limin,ZHOU Hua,CAO Qian. Micro pore structure characterization and classification evaluation of reservoirs in Weirong Deep Shale Gas Field [J]. Reservoir Evaluation and Development, 2021, 11(2): 154-163. |
[14] | HE Zhiliang,NIE Haikuan,JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin [J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145. |
[15] | Long Zhangliang,Zhong Jingmin,Hu Yongzhang,Wen Zhentao,Li Hui,Zeng Xianwei. Application of geomechanics in deep shale gas development in Yongchuan [J]. Reservoir Evaluation and Development, 2021, 11(1): 72-80. |
|