Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (1): 102-108.doi: 10.13809/j.cnki.cn32-1825/te.2021.01.014
• Shale Gas Development • Previous Articles Next Articles
Wang Xingwen(),Lin Yongmao,Miao Weijie
Received:
2020-10-20
Online:
2021-02-04
Published:
2021-02-26
CLC Number:
Xingwen Wang,Yongmao Lin,Weijie Miao. Volume fracturing technology of deep shale gas in southern Sichuan[J]. Reservoir Evaluation and Development, 2021, 11(1): 102-108.
Table 1
Deep shale gas reservoir geology characteristic"
区块 | 深度(m) | 优质页岩厚度(m) | 孔隙度(%) | TOC(有机碳含量)(%) | 含气性(m3/t) | 地层压力系数 |
---|---|---|---|---|---|---|
威远 | 3 500~4200 | 27.5 | 4.0 | 2.2~4.0 | 3.3~6.4 | 1.96 |
永川 | 3 800~4 100 | 30.0 | 5.3 | 2.8~5.5 | 6.7 | 1.70 |
丁山 | 4 200~4 500 | 23.7~30.5 | 5.8 | 3.6 | 4.4 | 1.40~1.55 |
涪陵深层 | 3 900~4 200 | 49.5 | 3.1 | 2.8 | 4.5 | 1.38 |
涪陵中深层 | 2 200~2 400 | 38.0 | 4.2~6.4 | 1.9~2.2 | 2.0~6.0 | 1.20~1.55 |
Table 2
Deep shale gas reservoir geomechanics characteristic"
井名 | 杨氏模量 (GPa) | 泊松比 | 脆性指数 (%) | 垂向应力 (MPa) | 最大水平 主应力(MPa) | 最小水平 主应力(MPa) | 水平地应力 差异系数 | 水平应力差(MPa) |
---|---|---|---|---|---|---|---|---|
威荣 | 21.7~33.8 | 0.237 | 38~46 | 86.0~97.7 | 87.7~112.0 | 84.0~101.0 | 0.080~0.250 | 7.00~17.30 |
永川 | 20.2~31.4 | 0.228 | 40~50 | 95.1~105.5 | 99.2~113.6 | 88.1~101.0 | 0.110~0.160 | 11.10~15.80 |
丁山 | 32.32 | 0.200 | 48~55 | 0.125 | 11.70~24.00 | |||
涪陵外围 | 27.3~37.0 | 0.200~0.220 | 52~55 | 95.5~99.3 | 87.0~94.9 | 79.6~86.5 | 0.140 | 7.40~8.37 |
涪陵中深层 | 38.37 | 0.190~0.200 | 62 | 51.9 | 54.2 | 49.0 | 0.110 | 5.20 |
Woodford | 34 | 0.180 | 55~75 | 0.075 | 2.00~4.00 | |||
Haynesville | 0.270 | 0.048 | 3.00~5.00 |
Table 4
Fracturing parameters and effect comparison"
工艺 | 井号 | 簇数 | 横向覆盖率(%) | 加砂强度(t/m) | 综合砂液比(%) | 无阻流量(104 m3/d) | 预测EUR(108 m3) |
---|---|---|---|---|---|---|---|
前期 | WY1HF | 42 | 90.8 | 1.20 | 2.6 | 22.0 | 0.40 |
WY23-1HF | 45 | 91.8 | 1.50 | 3.0 | 38.0 | 0.66 | |
WY29-1HF | 47 | 87.6 | 1.20 | 2.5 | 28.0 | 0.70 | |
WY35-1HF | 35 | 88.4 | 0.90 | 2.8 | 18.0 | 0.54 | |
WY9-1HF | 44 | 72.3 | 0.90 | 3.1 | 23.0 | 0.60 | |
WY11-1HF | 39 | 67.3 | 0.75 | 2.1 | 15.0 | 0.40 | |
平均 | 42 | 83.0 | 1.05 | 2.7 | 24.0 | 0.55 | |
后期 | WY23-2HF | 116 | 96.6 | 1.95 | 4.1 | 33.0 | 0.81 |
WY23-4HF | 108 | 94.8 | 1.95 | 4.1 | 38.0 | 0.90 | |
WY23-5HF | 116 | 93.8 | 1.80 | 3.8 | 30.0 | 0.85 | |
WY23-6HF | 115 | 97.2 | 1.80 | 3.8 | 33.0 | 0.80 | |
WY43-4HF | 104 | 97.8 | 2.40 | 4.0 | 54.7 | 1.13 | |
WY43-5HF | 98 | 98.2 | 1.95 | 3.5 | 42.5 | 0.93 | |
平均 | 110 | 96.4 | 1.95 | 3.9 | 38.5 | 0.90 |
[1] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012,39(2):129-136. |
Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012,39(2):129-136. | |
[2] |
Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China[J]. Energy Geoscience, 2020,1(1-2):55-68.
doi: 10.1016/j.engeos.2020.04.004 |
[3] | 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020,47(5):841-855. |
Ma Xinhua, Xie Jun, Yong Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Foramation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020,47(5):841-855. | |
[4] | 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36. |
Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36. | |
[5] | 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017,44(4):481-491. |
Guo Xusheng, Hu Dongfeng, Li Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017,44(4):481-491. | |
[6] | 刘土光, 张涛. 弹塑性力学基础理论[M]. 武汉: 华中科技大学出版社, 2008. |
Liu Tuguang, Zhang Tao. Basic theory of elasticity and plasticity[M]. Wuhan: Huazhong University of Science and Technology Press, 2008. | |
[7] | 赵金洲, 李勇明, 王松, 等. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 2014,34(1):68-73. |
Zhao Jinzhou, Li Yongming, Wang Song, et al. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry, 2014,34(1):68-73. | |
[8] |
张士诚, 牟松茹, 崔勇. 页岩气压裂数值模型分析[J]. 天然气工业, 2011,31(12):81-84.
doi: 10.3787/j.issn.1000-0976.2011.12.014 |
Zhang Shicheng, Mou Songru, Cui Yong. Numerical simulation models with hydraulic fracturing in shale gas reservoirs[J]. Natural Gas Industry, 2011,31(12):81-84.
doi: 10.3787/j.issn.1000-0976.2011.12.014 |
|
[9] | 任龙, 苏玉亮, 徐晨, 等. 非常规储层体积压裂水平井产能预测方法研究进展[C]// 2015油气田勘探与开发国际会议论文集. 西安:西安石油大学, 2015. |
Ren Long, Su Yuliang, Xu Chen, et al. Advances in the method of production performance prediction of SRV-fractured horizontal wells in unconventional reservoirs[C]// paper presented at the 2015 International Field Exploration and Development Conference. Xi’an: Xi’an Shiyou University, 2015. | |
[10] | 王雷, 王琦. 页岩气储层水力压裂复杂裂缝导流能力实验研究[J]. 西安石油大学学报(自然科学版), 2017,32(3):73-77. |
Wang Lei, Wang Qi. Experimental research on seepage capacity of complex fracture in shale gas reservoir after hydraulic fracturing[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017,32(3):73-77. | |
[11] |
Zhao Z H, Wu K D, Fan Y, et al. An optimization model for conductivity of hydraulic fracture networks in the Longmaxi shale, Sichuan basin, Southwest China[J]. Energy Geoscience, 2020,1(1-2):47-54.
doi: 10.1016/j.engeos.2020.05.001 |
[12] | Niandou H, Shao J F, Henry J P, et al. Laboratory investigation of the mechanical behaviour of tournemire shale[C]. International Journal of Rock Mechanics and Mining Sciences, 1997,34(1):3-16. |
[13] | 李庆辉, 陈勉, 金衍. 含气页岩破坏模式及力学特性的实验研究[J]. 岩石力学与工程学报, 2012,31(S2):3763-3771. |
Li Qinghui, Chen Mian, Jin Yan. Experimental research on failure modes and mechanical behaviors of gas-bearing shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(S2):3763-3771. | |
[14] | 孟陆波, 李天斌, 徐进, 等. 高温作用下围压对页岩力学特性影响的实验研究[J]. 煤炭学报, 2012,37(11):1829-1833. |
Meng Lubo, Li Tianbin, Xu Jin, et al. Experimental study on influence of confining pressure on shale mechanical properties under high temperature condition[J]. Journal of China Coal Society, 2012,37(11):1829-1833. | |
[15] | Taleghani A D, Olson J E. Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures[C]// paper SPE-124884-MS presented at the SPE Annual Technical Conference and Exhibition, October 4-7, 2009, New Orleans, Louisiana, USA. |
[16] | Jeffrey R G, Zhang X, Thiercelin M J. Hydraulic fracture offsetting in naturally fractures reservoirs: quantifying a long-recognized process[C]// paper SPE-119351-MS presented at the SPE Hydraulic Fracturing Technology Conference, January 19-21, 2009, The Woodlands, Texas, USA. |
[17] | 李勇明, 郭建春, 赵金洲, 等. 裂缝性气藏压裂液滤失模型的研究及应用[J]. 石油勘探与开发, 2004,31(5):120-122. |
Li Yongming, Guo Jianchun, Zhao Jinzhou, et al. New model for fracturing fluid leak-off in naturally fractured gas fields and its application[J]. Petroleum Exploration and Development, 2004,31(5):120-122. | |
[18] | 唐川. 页岩气藏水平井产量递减预测研究[D]. 成都:西南石油大学, 2013. |
Tang Chuan. The production decline prediction research of the horizontal well in shale reservoirs[D]. Chengdu: Southwest Petroleum University, 2013. | |
[19] | Zhou W T, Banerjee R, Poe B, et al. Semi-analytical production simulation of complex hydraulic fracture net-works[J]. SPE Journal, 2014,19(1):6-18. |
[20] | 王星皓. 泥页岩储层可压性研究[D]. 成都:西南石油大学, 2012. |
Wang Xinghao. Research on fracability of mud-shale reservoir[D]. Chengdu: Southwest Petroleum University, 2012. | |
[21] | 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013,34(3):523-527. |
Yuan Junliang, Deng Jingen, Zhang Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013,34(3):523-527. | |
[22] | 李勇明, 李莲明, 郭建春, 等. 二次加砂压裂理论模型及应用[J]. 新疆石油地质, 2010,31(2):190-193. |
Li Yongming, Li Lianming, Guo Jianchun, et al. Theoretical model and application of secondary sand fracturing[J]. Xinjiang Petroleum Geology, 2010,31(2):190-193. |
[1] | XU Ning, CHEN Zhewei, XU Wanchen, WANG Ling, CUI Xiaolei, JIANG Meizhong, ZHAN Changwu. Prediction and evaluation method for development effect of shale oil storage volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748. |
[2] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[3] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[4] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[5] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[6] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[7] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[8] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[9] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[10] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[11] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[12] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
[13] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[14] | ZHANG Jiawei, LIU Xiangjun, XIONG Jian, LIANG Lixi, REN Jianfei, LIU Baiqu. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667. |
[15] | CUI Chuanzhi, LI Huailiang, WU Zhongwei, ZHANG Chuanbao, LI Hongbo, ZHANG Yinghua, ZHENG Wenkuan. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. |
|