Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (6): 845-851.doi: 10.13809/j.cnki.cn32-1825/te.2021.06.007
• Methodological and Theory • Previous Articles Next Articles
HU Haisheng1(),GAO Yang1,SHAN Jiangtao1,LEI Xianmei2,ZHANG Yulong3,ZHANG Guangchao3,YE Zhongbin3
Received:
2020-08-25
Online:
2021-12-31
Published:
2021-12-26
CLC Number:
Haisheng HU,Yang GAO,Jiangtao SHAN, et al. Experimental researches on factors influencing supercritical CO2 extraction effect of crude oil from tight sandy conglomerate[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 845-851.
Table 1
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率 (10-3μm2) | 孔隙度 (%) | M (g) |
---|---|---|---|---|---|
LY-19-1 | 7.842 | 2.531 | 0.076 | 6.18 | 87.609 |
LY-19-2 | 7.937 | 2.536 | 0.054 | 5.87 | 88.128 |
LY-19-3 | 7.867 | 2.523 | 0.063 | 6.12 | 87.411 |
LY-19-4 | 7.905 | 2.518 | 0.058 | 5.96 | 87.799 |
LY-19-5 | 7.896 | 2.520 | 0.060 | 5.98 | 87.687 |
LY-19-6 | 7.872 | 2.508 | 0.061 | 6.02 | 86.846 |
Table 3
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-7 | 7.904 | 2.514 | 0.072 | 6.12 | 87.632 |
LY-19-8 | 7.927 | 2.509 | 0.064 | 5.96 | 88.017 |
LY-19-9 | 7.858 | 2.516 | 0.057 | 5.71 | 88.236 |
LY-19-10 | 7.898 | 2.521 | 0.061 | 5.76 | 87.374 |
LY-19-11 | 7.919 | 2.519 | 0.058 | 5.66 | 86.925 |
LY-19-12 | 7.814 | 2.525 | 0.072 | 6.14 | 87.251 |
LY-19-13 | 7.848 | 2.505 | 0.068 | 5.98 | 88.226 |
Table 4
Oil extraction rate of the experimental core"
岩心编号 | M1(g) | M2(g) | 温度(℃) | 萃取率(%) |
---|---|---|---|---|
LY-19-7 | 88.887 | 88.880 | 30 | 0.56 |
LY-19-8 | 89.233 | 88.957 | 35 | 22.70 |
LY-19-9 | 89.389 | 89.119 | 40 | 23.44 |
LY-19-10 | 88.557 | 88.277 | 45 | 23.68 |
LY-19-11 | 88.119 | 87.910 | 50 | 17.50 |
LY-19-12 | 88.588 | 88.367 | 55 | 16.53 |
LY-19-13 | 89.486 | 89.283 | 60 | 16.11 |
Table 5
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-14 | 7.897 | 2.524 | 0.056 | 5.67 | 88.713 |
LY-19-15 | 7.905 | 2.509 | 0.071 | 6.06 | 89.039 |
LY-19-16 | 7.866 | 2.517 | 0.068 | 5.94 | 88.618 |
LY-19-17 | 7.881 | 2.491 | 0.055 | 5.66 | 87.695 |
LY-19-18 | 7.914 | 2.505 | 0.051 | 5.48 | 86.599 |
LY-19-19 | 7.835 | 2.510 | 0.062 | 5.78 | 86.893 |
Table 7
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-20 | 7.871 | 2.534 | 0.055 | 5.62 | 87.512 |
LY-19-21 | 7.898 | 2.518 | 0.064 | 5.89 | 89.230 |
LY-19-22 | 7.903 | 2.526 | 0.077 | 6.22 | 88.701 |
LY-19-23 | 7.865 | 2.509 | 0.082 | 6.86 | 87.563 |
LY-19-24 | 7.927 | 2.513 | 0.066 | 5.94 | 86.436 |
LY-19-25 | 7.858 | 2.494 | 0.072 | 6.14 | 87.362 |
Table 9
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-19-26 | 7.900 | 2.544 | 0.058 | 5.96 |
LY-19-27 | 7.932 | 2.504 | 0.072 | 6.82 |
LY-19-28 | 7.890 | 2.488 | 0.083 | 7.11 |
LY-19-29 | 7.892 | 2.510 | 0.064 | 6.86 |
LY-19-30 | 7.848 | 2.496 | 0.068 | 6.42 |
LY-19-31 | 7.828 | 2.516 | 0.076 | 6.94 |
LY-19-32 | 7.786 | 2.532 | 0.064 | 6.12 |
LY-19-33 | 7.813 | 2.512 | 0.057 | 5.88 |
LY-19-34 | 7.806 | 2.530 | 0.066 | 6.33 |
Table 10
Oil extraction rate of the experimental core"
岩心编号 | M(g) | M1(g) | M2(g) | 萃取率(%) |
---|---|---|---|---|
LY-19-26 | 88.214 | 89.520 | 89.270 | 19.14 |
LY-19-27 | 89.023 | 90.483 | 90.173 | 21.23 |
LY-19-28 | 88.861 | 90.303 | 89.981 | 22.33 |
LY-19-29 | 87.960 | 89.389 | 89.059 | 23.09 |
LY-19-30 | 86.859 | 88.140 | 87.819 | 25.06 |
LY-19-31 | 87.128 | 88.539 | 88.208 | 23.46 |
LY-19-32 | 88.362 | 89.643 | 89.319 | 25.29 |
LY-19-33 | 88.882 | 90.113 | 89.804 | 25.10 |
LY-19-34 | 87.772 | 89.092 | 88.765 | 24.77 |
Table 12
Direct analysis results of orthogonal experiment"
实验指标 | 因素 | ||||
---|---|---|---|---|---|
压力(MPa) | 温度(℃) | 浸泡时间(min) | 循环时间(min) | ||
指标和 | T1 | 62.680 | 67.540 | 67.660 | 68.970 |
T2 | 71.601 | 71.349 | 69.141 | 69.951 | |
T3 | 75.150 | 70.539 | 72.630 | 70.509 | |
指标 均值 | t1 | 20.893 | 22.513 | 22.553 | 22.990 |
t2 | 23.867 | 23.783 | 23.047 | 23.317 | |
t3 | 25.050 | 23.513 | 24.210 | 23.503 | |
极差 | R | 4.157 | 1.270 | 1.657 | 0.513 |
[1] | 何云超, 张崇瑞. 新疆准噶尔盆地发现世界储量最大的砾岩油田[J]. 中国地质, 2017, 44(6):1174. |
HE Yunchao, ZHANG Chongrui. The world’s largest conglomerate oil field discovered in Junggar Basin, Xinjiang[J]. Geology in China, 2017, 44(6):1174. | |
[2] | 高嘉. 油藏二氧化碳驱提高采收率及埋存技术[J]. 中国石油石化, 2017, 15(5):29-30. |
GAO Jia. Enhanced oil recovery and storage technology by CO2 flooding in reservoir[J]. China Petrochem, 2017, 15(5):29-30. | |
[3] | 杨铁军, 张英芝, 杨正明, 等. 致密砂岩油藏CO2驱油提高采收率机理[J]. 科学技术与工程, 2019, 19(24):113-118. |
YANG Tiejun, ZHANG Yingzhi, YANG Zhengming, et al. Mechanism of enhanced oil recovery by CO2 flooding in tight sandstone reservoirs[J]. Science Technology and Engineering, 2019, 19(24):113-118. | |
[4] | 白玉彬, 罗静兰, 王少飞, 等. 鄂尔多斯盆地吴堡地区延长组长8致密砂岩油藏成藏主控因素[J]. 中国地质, 2013, 40(4):1159-1168. |
BAI Yubin, LUO Jinglan, WANG Shaofei, et al. The distribution of chang-8 tight sandstone oil reservoir of yanchang formation in wubao area, central-south of ordos basin[J]. Geology in China, 2013, 40(4):1159-1168. | |
[5] |
TANG M M, ZHAO H Y, MA H F, et al. Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs[J]. Fuel, 2017, 188:140-154.
doi: 10.1016/j.fuel.2016.10.027 |
[6] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418. |
[7] | 许琳, 常秋生, 冯玲丽, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素[J]. 中国石油勘探, 2019, 24(5):649-660. |
XU Lin, CHANG Qiusheng, FENG Lingli, et al. The reservoir characteristics and control factors of shale oil in Permian Fengcheng Formation of Mahu sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5):649-660. | |
[8] | 李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83. |
LI Mengtao, SHAN Wenwen, LIU Xiangui, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2006, 27(3):80-83. | |
[9] | 王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4):646-652. |
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology and Experiment, 2020, 42(4):646-652. | |
[10] |
PENG X Y, WENG Y Y, DIAO Y Q, et al. Experimental investigation on the operation parameters of carbon dioxide huff-n-puff process in ultra low permeability oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 174:903-912.
doi: 10.1016/j.petrol.2018.11.073 |
[11] | 马铨峥, 杨胜来, 陈浩, 等. 致密油储集层CO2吞吐效果及影响因素分析——以新疆吉木萨尔凹陷芦草沟组为例[J]. 石油科学通报, 2018, 3(4):434-445. |
MA Quanzheng, YANG Shenglai, CHEN hao, et al. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir——Taking the Lucaogou formation in the Xinjiang Jimsar sag as an example[J]. Petroleum Science Bulletin, 2018, 3(4):434-445. | |
[12] | 杨胜来, 杭达震, 孙蓉, 等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报:自然科学版, 2009, 1(4):85-88. |
YANG Shenglai, HANG Dazheng, SUN Rong, et al. CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum, 2009, 1(4):85-88. | |
[13] | 王鉴, 张楠, 武芹, 等. 超临界CO2溶解性能的研究进展[J]. 炼油与化工, 2011, 22(5):1-5. |
WANG Jian, ZHANG Nan, WU Qin, et al. Research progress on the solubility of supercritical CO2[J]. Refining and Chemical Industry, 2011, 22(5):1-5. | |
[14] | 张航国. 金南油田致密油藏CO2提高采收率物理模拟研究[J]. 石化技术, 2018, 25(4):269-270. |
ZHANG Hangguo. Physical simulation of CO2 enhanced oil recovery in Jinnan oil field[J]. Petrochemical Technology, 2018, 25(4):269-270. | |
[15] | 施雷庭, 张玉龙, 户海胜, 等. 砂砾岩致密油藏超临界二氧化碳吞吐适应性分析[J]. 科学技术与工程, 2020, 20(9):3598-3604. |
SHI Leiting, ZHANG Yulong, HU Haisheng, et al. Adaptability Analysis of Supercritical CO2 Huff and Puff in Tight Glutenite Reservoir[J]. Science Technology and Engineering, 2020, 20(9):3598-3604. | |
[16] | 王涛, 姚约东, 李相方, 等. 二氧化碳驱油效果影响因素与分析[J]. 中国石油和化工, 2008, 15(24):30-33. |
WANG Tao, YAO Yuedong, LI Xiangfang, et al. Influencing factors and analysis of carbon dioxide flooding effect[J]. Petroleum Engineering Technology, 2008, 15(24):30-33. | |
[17] | 梁宏儒, 薛海涛, 卢双舫, 等. 致密油藏水平井水力压裂CO2吞吐参数优化[J]. 大庆石油地质与开发, 2016, 35(4):161-167. |
LIANG Hongru, XUE Haitao, LU Shuangfang, et al. Parameters optimization of hydro-fractured CO2 huff-puff horizontal well in the tight oil reservoir[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(4):161-167. | |
[18] |
LINDEBERG E, GRIMSTAD A, BERGMO P, et al. Large scale tertiary CO2 EOR in mature water flooded norwegian oil fields[J]. Energy Procedia, 2017, 114:7096-7106.
doi: 10.1016/j.egypro.2017.03.1851 |
[19] |
SUN R X, YU W, XU F, et al. Compositional simulation of CO2 huff-n-puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236:1446-1457.
doi: 10.1016/j.fuel.2018.09.113 |
[20] | 周拓, 刘学伟, 王艳丽, 等. 致密油藏水平井分段压裂CO2吞吐实验研究[J]. 西南石油大学学报:自然科学版, 2017, 39(2):125-131. |
ZHOU Tuo, LIU Xuewei, WANG Yanli, et al. Experiments of CO2 huff-n-puff process in staged fracturing horizontal wells for developing tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):125-131. | |
[21] |
SONG C Y, YANG D Y. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190:145-162.
doi: 10.1016/j.fuel.2016.11.041 |
[22] | 王高峰, 孙蓉, 鞠玮艳, 等. 低渗透油藏气驱注采压力系统诊断模型[J]. 科学技术与工程, 2019, 18(20):96-101. |
WANG Gaofeng, SUN Rong, JU Weiyan, et al. Diagnosis of injection-production pressure system in gas flooding tight reservoirs[J]. Science Technology and Engineering, 2019, 18(20):96-101. | |
[23] |
REN B, DUNCAN I J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA[J]. Energy, 2019, 167:391-401.
doi: 10.1016/j.energy.2018.11.007 |
[1] | SHI Yan, XIE Junhui, GUO Xiaoting, WU Tong, CHEN Dequan, SUN Lin, DU Daijun. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82. |
[2] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[3] | SHU Huawen. Key engineering technologies of one-million-ton CCUS transportation-injection-extraction in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 10-17. |
[4] | LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. |
[5] | WANG Yingwei,WU Shunwei,QIN Jianhua,YE Yiping,GAO Yang,ZHANG Jing. Effects of supercritical CO2 immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 837-844. |
[6] | CHEN Shijie,PAN Yi,SUN Lei,SI Yong,LIANG Fei,GAO Li. Mechanism of enhanced oil recovery by CO2 combination flooding in low permeability and high pour-point reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 823-830. |
[7] | LIU Penggang,SUN Tianli,CHEN Wei,HOU Xiaozhi,HUANG Yuanhe,ZHU Guo,HE Hai,FANG Bin. Analysis and optimization of influencing factors of negative pressure stripping desulfurization process for sour water in Yuanba gas field [J]. Reservoir Evaluation and Development, 2020, 10(4): 125-129. |
[8] | LI Shilun,SUN Lei,CHEN Zuhua,LI Jian,TANG Yong,PAN Yi. Further discussion on reservoir engineering concept and development mode of CO2 flooding-EOR technology [J]. Reservoir Evaluation and Development, 2020, 10(3): 1-14. |
[9] | YANG Ming,LI Xiaobo,TAN Tao,LI Qing,LIU Honggunag,ZANG Yixia. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: A case study of TK440 well area in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 43-48. |
[10] | QI Guixue. Effect of CO2 extraction on minimum miscibility pressure [J]. Reservoir Evaluation and Development, 2019, 9(6): 51-55. |
[11] | Shi Leiting,Zhu Shijie,Ma Jie,Yang Mei,Peng Yangping,Ye Zhongbin. Numerical simulation of tight oil extraction with supercritical CO2 [J]. Reservoir Evaluation and Development, 2019, 9(3): 25-31. |
|