Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (6): 845-851.doi: 10.13809/j.cnki.cn32-1825/te.2021.06.007
• Methodological and Theory • Previous Articles Next Articles
HU Haisheng1(),GAO Yang1,SHAN Jiangtao1,LEI Xianmei2,ZHANG Yulong3,ZHANG Guangchao3,YE Zhongbin3
Received:
2020-08-25
Online:
2021-12-31
Published:
2021-12-26
CLC Number:
Haisheng HU,Yang GAO,Jiangtao SHAN, et al. Experimental researches on factors influencing supercritical CO2 extraction effect of crude oil from tight sandy conglomerate[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 845-851.
Table 1
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率 (10-3μm2) | 孔隙度 (%) | M (g) |
---|---|---|---|---|---|
LY-19-1 | 7.842 | 2.531 | 0.076 | 6.18 | 87.609 |
LY-19-2 | 7.937 | 2.536 | 0.054 | 5.87 | 88.128 |
LY-19-3 | 7.867 | 2.523 | 0.063 | 6.12 | 87.411 |
LY-19-4 | 7.905 | 2.518 | 0.058 | 5.96 | 87.799 |
LY-19-5 | 7.896 | 2.520 | 0.060 | 5.98 | 87.687 |
LY-19-6 | 7.872 | 2.508 | 0.061 | 6.02 | 86.846 |
Table 3
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-7 | 7.904 | 2.514 | 0.072 | 6.12 | 87.632 |
LY-19-8 | 7.927 | 2.509 | 0.064 | 5.96 | 88.017 |
LY-19-9 | 7.858 | 2.516 | 0.057 | 5.71 | 88.236 |
LY-19-10 | 7.898 | 2.521 | 0.061 | 5.76 | 87.374 |
LY-19-11 | 7.919 | 2.519 | 0.058 | 5.66 | 86.925 |
LY-19-12 | 7.814 | 2.525 | 0.072 | 6.14 | 87.251 |
LY-19-13 | 7.848 | 2.505 | 0.068 | 5.98 | 88.226 |
Table 4
Oil extraction rate of the experimental core"
岩心编号 | M1(g) | M2(g) | 温度(℃) | 萃取率(%) |
---|---|---|---|---|
LY-19-7 | 88.887 | 88.880 | 30 | 0.56 |
LY-19-8 | 89.233 | 88.957 | 35 | 22.70 |
LY-19-9 | 89.389 | 89.119 | 40 | 23.44 |
LY-19-10 | 88.557 | 88.277 | 45 | 23.68 |
LY-19-11 | 88.119 | 87.910 | 50 | 17.50 |
LY-19-12 | 88.588 | 88.367 | 55 | 16.53 |
LY-19-13 | 89.486 | 89.283 | 60 | 16.11 |
Table 5
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-14 | 7.897 | 2.524 | 0.056 | 5.67 | 88.713 |
LY-19-15 | 7.905 | 2.509 | 0.071 | 6.06 | 89.039 |
LY-19-16 | 7.866 | 2.517 | 0.068 | 5.94 | 88.618 |
LY-19-17 | 7.881 | 2.491 | 0.055 | 5.66 | 87.695 |
LY-19-18 | 7.914 | 2.505 | 0.051 | 5.48 | 86.599 |
LY-19-19 | 7.835 | 2.510 | 0.062 | 5.78 | 86.893 |
Table 7
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-20 | 7.871 | 2.534 | 0.055 | 5.62 | 87.512 |
LY-19-21 | 7.898 | 2.518 | 0.064 | 5.89 | 89.230 |
LY-19-22 | 7.903 | 2.526 | 0.077 | 6.22 | 88.701 |
LY-19-23 | 7.865 | 2.509 | 0.082 | 6.86 | 87.563 |
LY-19-24 | 7.927 | 2.513 | 0.066 | 5.94 | 86.436 |
LY-19-25 | 7.858 | 2.494 | 0.072 | 6.14 | 87.362 |
Table 9
Parameters of the experimental core"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-19-26 | 7.900 | 2.544 | 0.058 | 5.96 |
LY-19-27 | 7.932 | 2.504 | 0.072 | 6.82 |
LY-19-28 | 7.890 | 2.488 | 0.083 | 7.11 |
LY-19-29 | 7.892 | 2.510 | 0.064 | 6.86 |
LY-19-30 | 7.848 | 2.496 | 0.068 | 6.42 |
LY-19-31 | 7.828 | 2.516 | 0.076 | 6.94 |
LY-19-32 | 7.786 | 2.532 | 0.064 | 6.12 |
LY-19-33 | 7.813 | 2.512 | 0.057 | 5.88 |
LY-19-34 | 7.806 | 2.530 | 0.066 | 6.33 |
Table 10
Oil extraction rate of the experimental core"
岩心编号 | M(g) | M1(g) | M2(g) | 萃取率(%) |
---|---|---|---|---|
LY-19-26 | 88.214 | 89.520 | 89.270 | 19.14 |
LY-19-27 | 89.023 | 90.483 | 90.173 | 21.23 |
LY-19-28 | 88.861 | 90.303 | 89.981 | 22.33 |
LY-19-29 | 87.960 | 89.389 | 89.059 | 23.09 |
LY-19-30 | 86.859 | 88.140 | 87.819 | 25.06 |
LY-19-31 | 87.128 | 88.539 | 88.208 | 23.46 |
LY-19-32 | 88.362 | 89.643 | 89.319 | 25.29 |
LY-19-33 | 88.882 | 90.113 | 89.804 | 25.10 |
LY-19-34 | 87.772 | 89.092 | 88.765 | 24.77 |
Table 11
Orthogonal experiment scheme and extraction rate"
方案 | 因素 | 萃取率 (%) | |||
---|---|---|---|---|---|
压力 (MPa) | 温度 (℃) | 浸泡时间 (min) | 循环时间 (min) | ||
1 | 15 | 40 | 60 | 90 | 19.14 |
2 | 15 | 50 | 90 | 120 | 21.23 |
3 | 15 | 60 | 120 | 150 | 22.33 |
4 | 20 | 40 | 90 | 150 | 23.09 |
5 | 20 | 50 | 120 | 90 | 25.06 |
6 | 20 | 60 | 60 | 120 | 23.46 |
7 | 25 | 40 | 120 | 120 | 25.29 |
8 | 25 | 50 | 60 | 150 | 25.10 |
9 | 25 | 60 | 90 | 90 | 24.77 |
Table 12
Direct analysis results of orthogonal experiment"
实验指标 | 因素 | ||||
---|---|---|---|---|---|
压力(MPa) | 温度(℃) | 浸泡时间(min) | 循环时间(min) | ||
指标和 | T1 | 62.680 | 67.540 | 67.660 | 68.970 |
T2 | 71.601 | 71.349 | 69.141 | 69.951 | |
T3 | 75.150 | 70.539 | 72.630 | 70.509 | |
指标 均值 | t1 | 20.893 | 22.513 | 22.553 | 22.990 |
t2 | 23.867 | 23.783 | 23.047 | 23.317 | |
t3 | 25.050 | 23.513 | 24.210 | 23.503 | |
极差 | R | 4.157 | 1.270 | 1.657 | 0.513 |
[1] | 何云超, 张崇瑞. 新疆准噶尔盆地发现世界储量最大的砾岩油田[J]. 中国地质, 2017, 44(6):1174. |
HE Yunchao, ZHANG Chongrui. The world’s largest conglomerate oil field discovered in Junggar Basin, Xinjiang[J]. Geology in China, 2017, 44(6):1174. | |
[2] | 高嘉. 油藏二氧化碳驱提高采收率及埋存技术[J]. 中国石油石化, 2017, 15(5):29-30. |
GAO Jia. Enhanced oil recovery and storage technology by CO2 flooding in reservoir[J]. China Petrochem, 2017, 15(5):29-30. | |
[3] | 杨铁军, 张英芝, 杨正明, 等. 致密砂岩油藏CO2驱油提高采收率机理[J]. 科学技术与工程, 2019, 19(24):113-118. |
YANG Tiejun, ZHANG Yingzhi, YANG Zhengming, et al. Mechanism of enhanced oil recovery by CO2 flooding in tight sandstone reservoirs[J]. Science Technology and Engineering, 2019, 19(24):113-118. | |
[4] | 白玉彬, 罗静兰, 王少飞, 等. 鄂尔多斯盆地吴堡地区延长组长8致密砂岩油藏成藏主控因素[J]. 中国地质, 2013, 40(4):1159-1168. |
BAI Yubin, LUO Jinglan, WANG Shaofei, et al. The distribution of chang-8 tight sandstone oil reservoir of yanchang formation in wubao area, central-south of ordos basin[J]. Geology in China, 2013, 40(4):1159-1168. | |
[5] |
TANG M M, ZHAO H Y, MA H F, et al. Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs[J]. Fuel, 2017, 188:140-154.
doi: 10.1016/j.fuel.2016.10.027 |
[6] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418. |
[7] | 许琳, 常秋生, 冯玲丽, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素[J]. 中国石油勘探, 2019, 24(5):649-660. |
XU Lin, CHANG Qiusheng, FENG Lingli, et al. The reservoir characteristics and control factors of shale oil in Permian Fengcheng Formation of Mahu sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5):649-660. | |
[8] | 李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83. |
LI Mengtao, SHAN Wenwen, LIU Xiangui, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2006, 27(3):80-83. | |
[9] | 王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4):646-652. |
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology and Experiment, 2020, 42(4):646-652. | |
[10] |
PENG X Y, WENG Y Y, DIAO Y Q, et al. Experimental investigation on the operation parameters of carbon dioxide huff-n-puff process in ultra low permeability oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 174:903-912.
doi: 10.1016/j.petrol.2018.11.073 |
[11] | 马铨峥, 杨胜来, 陈浩, 等. 致密油储集层CO2吞吐效果及影响因素分析——以新疆吉木萨尔凹陷芦草沟组为例[J]. 石油科学通报, 2018, 3(4):434-445. |
MA Quanzheng, YANG Shenglai, CHEN hao, et al. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir——Taking the Lucaogou formation in the Xinjiang Jimsar sag as an example[J]. Petroleum Science Bulletin, 2018, 3(4):434-445. | |
[12] | 杨胜来, 杭达震, 孙蓉, 等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报:自然科学版, 2009, 1(4):85-88. |
YANG Shenglai, HANG Dazheng, SUN Rong, et al. CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum, 2009, 1(4):85-88. | |
[13] | 王鉴, 张楠, 武芹, 等. 超临界CO2溶解性能的研究进展[J]. 炼油与化工, 2011, 22(5):1-5. |
WANG Jian, ZHANG Nan, WU Qin, et al. Research progress on the solubility of supercritical CO2[J]. Refining and Chemical Industry, 2011, 22(5):1-5. | |
[14] | 张航国. 金南油田致密油藏CO2提高采收率物理模拟研究[J]. 石化技术, 2018, 25(4):269-270. |
ZHANG Hangguo. Physical simulation of CO2 enhanced oil recovery in Jinnan oil field[J]. Petrochemical Technology, 2018, 25(4):269-270. | |
[15] | 施雷庭, 张玉龙, 户海胜, 等. 砂砾岩致密油藏超临界二氧化碳吞吐适应性分析[J]. 科学技术与工程, 2020, 20(9):3598-3604. |
SHI Leiting, ZHANG Yulong, HU Haisheng, et al. Adaptability Analysis of Supercritical CO2 Huff and Puff in Tight Glutenite Reservoir[J]. Science Technology and Engineering, 2020, 20(9):3598-3604. | |
[16] | 王涛, 姚约东, 李相方, 等. 二氧化碳驱油效果影响因素与分析[J]. 中国石油和化工, 2008, 15(24):30-33. |
WANG Tao, YAO Yuedong, LI Xiangfang, et al. Influencing factors and analysis of carbon dioxide flooding effect[J]. Petroleum Engineering Technology, 2008, 15(24):30-33. | |
[17] | 梁宏儒, 薛海涛, 卢双舫, 等. 致密油藏水平井水力压裂CO2吞吐参数优化[J]. 大庆石油地质与开发, 2016, 35(4):161-167. |
LIANG Hongru, XUE Haitao, LU Shuangfang, et al. Parameters optimization of hydro-fractured CO2 huff-puff horizontal well in the tight oil reservoir[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(4):161-167. | |
[18] |
LINDEBERG E, GRIMSTAD A, BERGMO P, et al. Large scale tertiary CO2 EOR in mature water flooded norwegian oil fields[J]. Energy Procedia, 2017, 114:7096-7106.
doi: 10.1016/j.egypro.2017.03.1851 |
[19] |
SUN R X, YU W, XU F, et al. Compositional simulation of CO2 huff-n-puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236:1446-1457.
doi: 10.1016/j.fuel.2018.09.113 |
[20] | 周拓, 刘学伟, 王艳丽, 等. 致密油藏水平井分段压裂CO2吞吐实验研究[J]. 西南石油大学学报:自然科学版, 2017, 39(2):125-131. |
ZHOU Tuo, LIU Xuewei, WANG Yanli, et al. Experiments of CO2 huff-n-puff process in staged fracturing horizontal wells for developing tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):125-131. | |
[21] |
SONG C Y, YANG D Y. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190:145-162.
doi: 10.1016/j.fuel.2016.11.041 |
[22] | 王高峰, 孙蓉, 鞠玮艳, 等. 低渗透油藏气驱注采压力系统诊断模型[J]. 科学技术与工程, 2019, 18(20):96-101. |
WANG Gaofeng, SUN Rong, JU Weiyan, et al. Diagnosis of injection-production pressure system in gas flooding tight reservoirs[J]. Science Technology and Engineering, 2019, 18(20):96-101. | |
[23] |
REN B, DUNCAN I J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA[J]. Energy, 2019, 167:391-401.
doi: 10.1016/j.energy.2018.11.007 |
[1] | JIN Guang, TENG Hongquan, GUO Hong, XIA Qing, SHEN Zhenkun, LIU Qiang, LI Shuangtao, NIU Jianbo, CAI Wanlong. Analysis of heat exchange performance and optimization of inner pipe design in geothermal wells reconstructed from depleted oil and gas wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 864-871. |
[2] | SHI Yan, XIE Junhui, GUO Xiaoting, WU Tong, CHEN Dequan, SUN Lin, DU Daijun. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82. |
[3] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[4] | SHU Huawen. Key engineering technologies of one-million-ton CCUS transportation-injection-extraction in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 10-17. |
[5] | LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. |
[6] | WANG Yingwei,WU Shunwei,QIN Jianhua,YE Yiping,GAO Yang,ZHANG Jing. Effects of supercritical CO2 immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 837-844. |
[7] | CHEN Shijie,PAN Yi,SUN Lei,SI Yong,LIANG Fei,GAO Li. Mechanism of enhanced oil recovery by CO2 combination flooding in low permeability and high pour-point reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 823-830. |
[8] | LIU Penggang,SUN Tianli,CHEN Wei,HOU Xiaozhi,HUANG Yuanhe,ZHU Guo,HE Hai,FANG Bin. Analysis and optimization of influencing factors of negative pressure stripping desulfurization process for sour water in Yuanba gas field [J]. Reservoir Evaluation and Development, 2020, 10(4): 125-129. |
[9] | LI Shilun,SUN Lei,CHEN Zuhua,LI Jian,TANG Yong,PAN Yi. Further discussion on reservoir engineering concept and development mode of CO2 flooding-EOR technology [J]. Reservoir Evaluation and Development, 2020, 10(3): 1-14. |
[10] | YANG Ming,LI Xiaobo,TAN Tao,LI Qing,LIU Honggunag,ZANG Yixia. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: A case study of TK440 well area in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 43-48. |
[11] | QI Guixue. Effect of CO2 extraction on minimum miscibility pressure [J]. Reservoir Evaluation and Development, 2019, 9(6): 51-55. |
[12] | Shi Leiting,Zhu Shijie,Ma Jie,Yang Mei,Peng Yangping,Ye Zhongbin. Numerical simulation of tight oil extraction with supercritical CO2 [J]. Reservoir Evaluation and Development, 2019, 9(3): 25-31. |
|