Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (6): 837-844.doi: 10.13809/j.cnki.cn32-1825/te.2021.06.006
• Methodological and Theory • Previous Articles Next Articles
WANG Yingwei1(),WU Shunwei1,QIN Jianhua1,YE Yiping2,GAO Yang1,ZHANG Jing1
Received:
2020-10-09
Online:
2021-12-31
Published:
2021-12-26
CLC Number:
Yingwei WANG,Shunwei WU,Jianhua QIN, et al. Effects of supercritical CO2 immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 837-844.
Table 3
Changes of gas permeability and porosity before and after core drying and supercritical CO2 soaking"
岩心 编号 | 浸泡时间(d) | 气测渗透率(10-3 μm2) | 孔隙度(%) | |||
---|---|---|---|---|---|---|
浸泡前 | 浸泡后 | 浸泡前 | 浸泡后 | |||
LY-5-1 | 1 | 9.68 | 9.74 | 11.59 | 11.67 | |
LY-5-2 | 1 | 9.79 | 9.93 | 12.00 | 12.08 | |
LY-5-3 | 3 | 9.24 | 9.48 | 11.85 | 12.06 | |
LY-5-4 | 3 | 9.32 | 9.55 | 11.61 | 11.72 | |
LY-5-5 | 6 | 9.70 | 9.82 | 11.42 | 11.57 | |
LY-5-6 | 6 | 9.62 | 9.75 | 11.67 | 11.82 | |
LY-5-7 | 10 | 9.54 | 9.71 | 11.74 | 11.84 | |
LY-5-8 | 10 | 9.81 | 9.97 | 11.65 | 11.86 |
Table 4
Experimental core parameters"
岩心 编号 | 长度 (cm) | 直径 (cm) | 气测渗透率(10-3 μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-1-1 | 7.34 | 2.52 | 7.32 | 11.34 |
LY-1-2 | 7.35 | 2.52 | 8.14 | 11.56 |
LY-1-3 | 7.30 | 2.52 | 7.97 | 11.38 |
LY-1-4 | 7.24 | 2.53 | 7.66 | 11.27 |
LY-1-5 | 7.45 | 2.53 | 8.05 | 11.36 |
LY-1-6 | 6.93 | 2.53 | 7.86 | 11.47 |
LY-1-7 | 7.21 | 2.52 | 7.74 | 11.30 |
LY-1-8 | 7.24 | 2.53 | 7.62 | 11.54 |
Table 6
Experimental core parameters"
岩心 编号 | 长度 (cm) | 直径 (cm) | 气测渗透率(10-3 μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-2-1 | 7.23 | 2.53 | 7.01 | 11.03 |
LY-2-2 | 7.29 | 2.53 | 7.12 | 11.12 |
LY-2-3 | 7.34 | 2.53 | 7.62 | 11.31 |
LY-2-4 | 7.08 | 2.53 | 7.34 | 11.25 |
LY-2-5 | 7.30 | 2.53 | 7.57 | 11.45 |
LY-2-6 | 7.22 | 2.53 | 7.22 | 11.31 |
LY-2-7 | 7.31 | 2.53 | 7.96 | 11.47 |
LY-2-8 | 7.30 | 2.53 | 7.33 | 11.29 |
Table 8
Experimental core parameters"
岩心 编号 | 长度 (cm) | 直径 (cm) | 气测渗透率 (10-3 μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-3-1 | 7.12 | 2.52 | 8.23 | 11.65 |
LY-3-2 | 7.24 | 2.51 | 8.04 | 11.48 |
LY-3-3 | 7.30 | 2.53 | 8.33 | 11.54 |
LY-3-4 | 7.08 | 2.53 | 8.51 | 11.68 |
LY-3-5 | 7.30 | 2.53 | 8.11 | 11.32 |
LY-3-6 | 7.22 | 2.53 | 8.17 | 11.41 |
LY-3-7 | 7.31 | 2.53 | 8.26 | 11.50 |
LY-3-8 | 7.30 | 2.53 | 8.44 | 11.61 |
Table 10
Experimental core parameters"
岩心 编号 | 长度 (cm) | 直径 (cm) | 气测渗透率 (10-3 μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-4-1 | 7.20 | 2.53 | 8.87 | 11.74 |
LY-4-2 | 7.36 | 2.52 | 8.74 | 11.68 |
LY-4-3 | 7.21 | 2.53 | 9.01 | 11.88 |
LY-4-4 | 7.28 | 2.52 | 8.64 | 11.54 |
LY-4-5 | 7.09 | 2.52 | 8.67 | 11.72 |
LY-4-6 | 7.15 | 2.53 | 8.66 | 11.64 |
LY-4-7 | 7.22 | 2.53 | 8.58 | 11.59 |
LY-4-8 | 7.26 | 2.53 | 8.69 | 11.71 |
Table 12
Experimental core parameters"
岩心 编号 | 长度 (cm) | 直径 (cm) | 气测渗透率 (10-3 μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-5-1 | 7.24 | 2.53 | 9.24 | 11.84 |
LY-5-2 | 7.36 | 2.52 | 9.12 | 11.78 |
LY-5-3 | 7.21 | 2.53 | 9.11 | 11.74 |
LY-5-4 | 7.28 | 2.52 | 9.06 | 11.67 |
LY-5-5 | 7.09 | 2.52 | 9.31 | 11.91 |
LY-5-6 | 7.15 | 2.53 | 9.17 | 11.81 |
LY-5-7 | 7.22 | 2.53 | 9.16 | 11.66 |
LY-5-8 | 7.26 | 2.53 | 9.22 | 11.77 |
[1] | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1):13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbons resources[J]. Petroleum Exploration and Development, 2015, 42(1):13-25. | |
[2] | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2):1-13. |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2):1-13. | |
[3] | 吴西顺, 孙张涛, 杨添天, 等. 全球非常规油气勘探开发进展及资源潜力[J]. 海洋地质前沿, 2020, 36(4):1-17. |
WU Xishun, SUN Zhangtao, YANG Tiantian, et al. Global progress in exploration and development of unconventional hydrocarbons and assessment of resources potential[J]. Marine Geology Frontiers, 2020, 36(4):1-17. | |
[4] | 何云超, 张崇瑞. 新疆准噶尔盆地发现世界储量最大的砾岩油田[J]. 中国地质, 2017, 44(6):1174-1174. |
HE Yunchao, ZHANG Chongrui. The world’s largest conglomerate oil field discovered in Junggar basin, Xinjiang[J]. Geology In China, 2017, 44(6):1174-1174. | |
[5] | 李映艳, 钱根葆, 高阳, 等. 准噶尔盆地玛湖凹陷百口泉组砾岩致密油藏地质“甜点”分级标准及应用[J]. 东北石油大学学报, 2018, 42(6):85-94. |
LI Yingyan, QIAN Genbao, GAO Yang, et al. Identification criterion of the geological “sweet point” of conglomerate tight reservoir and its application of Baikouquan formation in Mahu sag, Junggar basin[J]. Journal of Northeast Petroleum University, 2018, 42(6):85-94. | |
[6] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418. |
[7] | 施雷庭, 朱诗杰, 马杰, 等. 超临界CO2萃取致密油的数值模拟研究[J]. 油气藏评价与开发, 2019, 9(3):25-31. |
SHI Leiting, ZHU Shijie, MA Jie, et al. Numerical simulation of tight oil extraction with supercritical CO2[J]. Reservoir Evaluation and Development, 2019, 9(3):25-31. | |
[8] |
DU D J, PU W F, JIN F Y, et al. Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale[J]. Chemical Engineering Research and Design, 2020, 156:425-432.
doi: 10.1016/j.cherd.2020.02.018 |
[9] | 刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6):28-35. |
LIU Ling, TANG Dazhen, WANG Feng. Clay minerals characteristics of tight sandstone and its impact on reservoir physical properties Taiyuan formation of block Linxing in Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6):28-35. | |
[10] |
SONG Z J, SONG Y L, LI Y Z, et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[J]. Fuel, 2020, 276:118006.
doi: 10.1016/j.fuel.2020.118006 |
[11] |
LI S H, ZHANG S C, ZOU Y S, et al. Pore structure alteration induced by CO2-brine-rock interaction during CO2 energetic fracturing in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 191:107147.
doi: 10.1016/j.petrol.2020.107147 |
[12] |
WU S T, ZOU C N, MA D S, et al. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone: Implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone, Ordos Basin, China[J]. Journal of Asian earth sciences, 2019, 179:200-210.
doi: 10.1016/j.jseaes.2019.05.002 |
[13] | 戴彩丽, 丁行行, 于志豪, 等. CO2和地层水对储层物性的影响研究进展[J]. 油田化学, 2019, 36(4):741-747. |
DAI Caili, DING Xingxing, YU Zhihao, et al. Research progress on the effects of CO2 and formation water on reservoir physical properties[J]. Oilfield Chemistry, 2019, 36(4):741-747. | |
[14] |
REN B, DUNCAN I J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA[J]. Energy, 2019, 167:391-401.
doi: 10.1016/j.energy.2018.11.007 |
[15] | 袁舟, 廖新维, 赵晓亮, 等. 砂岩油藏CO2驱替过程中溶蚀作用对储层物性的影响[J]. 油气地质与采收率, 2020, 27(5):97-104. |
YUAN Zhou, LIAO Xinwei, ZHAO Xiaoliang, et al. Effect of dissolution on physical properties of sandstone reservoirs during CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5):97-104. | |
[16] | 周拓, 刘学伟, 王艳丽, 等. 致密油藏水平井分段压裂CO2吞吐实验研究[J]. 西南石油大学学报(自然科学版), 2017, 39(2):125-131. |
ZHOU Tuo, LIU Xuewei, WANG Yanli, et al. Experiments of CO2 huff-n-puff process in staged fracturing horizontal wells for developing tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):125-131. | |
[17] |
WU S Y, LI Z M, SARMA H K. Influence of confinement effect on recovery mechanisms of CO2-enhanced tight-oil recovery process considering critical properties shift, capillarity and adsorption[J]. Fuel, 2019, 262:116569.
doi: 10.1016/j.fuel.2019.116569 |
[18] | 何应付, 赵淑霞, 刘学伟. 致密油藏多级压裂水平井CO2吞吐机理[J]. 断块油气田, 2018, 25(6):752-756. |
HE Yingfu, ZHAO Shuxia, LIU Xuewei, et al. Mechanism of CO2 Huff and Puff of multi-stage fractured horizontal well in tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(6):752-756. | |
[19] | 李阳, 李树同, 牟炜卫, 等. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7):1043-1053. |
LI Yang, LI Shutong, MOU Weiwei, et al. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan Area, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(7):1043-1053. | |
[20] | 刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6):28-35. |
LIU Ling, TANG Dazhen, WANG Feng. Clay minerals characteristics of tight sandstone and its impact on reservoir physical properties in Taiyuan Formation of block Linxing in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6):28-35. | |
[21] |
SUN R X, YU W, XU F, et al. Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236:1446-1457.
doi: 10.1016/j.fuel.2018.09.113 |
[22] | 施雷庭, 户海胜, 张玉龙, 等. 致密砂砾岩矿物与超临界CO2和地层水相互作用[J]. 油田化学, 2019, 36(4):640-645. |
SHI Leiting, HU Haisheng, ZHANG Yulong, et al. Interaction of tight glutenite mineral with supercritical CO2 and formation water[J]. Oilfield Chemistry, 2019, 36(4):640-645. |
[1] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[2] | LI Zhongchao, QI Guixue, LUO Bobo, XU Xun, CHEN Hua. Gas flooding adaptability of deep low permeability condensate gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 324-332. |
[3] | TANG Yong, TANG Kai, XIA Guang, XU Di. Retrograde condensation pollution and removal method of BZ19-6 low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 102-107. |
[4] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[5] | LI Jianshan, GAO Hao, YAN Changhao, WANG Shitou, WANG Liangliang. Molecular dynamics simulation on interaction mechanisms of crude oil and CO2 [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 26-34. |
[6] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[7] | SUN Yili. Mechanism of CO2 injection to improve the water injection capacity of low permeability reservoir in Shuanghe Oilfield in Henan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 55-63. |
[8] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[9] | CHEN Minfeng,QIN Lifeng,ZHAO Kang,WANG Yiwen. Effective injection-production well spacing in pressure-sensitive reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 855-862. |
[10] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[11] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[12] | LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. |
[13] | WANG Dianlin, YANG Qiong, WEI Bing, JI Bingxin, XIN Jun, SUN Lin. Effect of betaine surfactant structure on the properties of CO2 foam film [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 313-321. |
[14] | LIAO Songlin,XIA Yang,CUI Yinan,LIU Fangzhi,CAO Shengjiang,TANG Yong. Variation of crude oil properties with multi-cycle CO2 huff-n-puff of horizontal wells in ultra-low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 784-793. |
[15] | GUO Deming,PAN Yi,SUN Yang,CHAO Zhongtang,LI Xiaonan,CHENG Shisheng. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. |
|