Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (5): 741-748.doi: 10.13809/j.cnki.cn32-1825/te.2024.05.009
• Engineering Process • Previous Articles Next Articles
XU Ning1(), CHEN Zhewei2, XU Wanchen3, WANG Ling1, CUI Xiaolei1, JIANG Meizhong1, ZHAN Changwu1
Received:
2024-04-18
Online:
2024-10-11
Published:
2024-10-26
CLC Number:
XU Ning,CHEN Zhewei,XU Wanchen, et al. Prediction and evaluation method for development effect of shale oil storage volume fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748.
Table 1
Statistics and prediction of main production indicators for horizontal wells with pressure build-up"
井号 | 层位 | 水平段 长度/m | 总入地 液量/m3 | 阶段累计产油量/t | 目前日产油量/t | 生产时间/d | 见油前排液 速度/(m3/d) | F-EUR/t | 蓄压 采收率/% | 液油比/(m3/t) | 平均返排速度/(m3/d) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
递减曲线法 | 返排率法 | ||||||||||||
QLL86H601 | 长6段3砂岩组 1小层 | 832.0 | 11 185.4 | 3 360 | 6.01 | 334 | 32.4 | 4 072 | 6 474 | 7.45 | 2.07 | 13.7 | |
N175-H1 | 长8段2砂岩组 | 1 110.4 | 19 072.0 | 6 490 | 3.63 | 1 010 | 80.6 | 7 264 | 9 437 | 7.02 | 2.81 | 13.7 | |
N175-H2 | 长8段2砂岩组 | 1 157.8 | 14 556.0 | 1 401 | 0 | 669 | 18.4 | 1 520 | 0.88 | 9.58 | 19.9 | ||
N175-H3 | 长8段2砂岩组 | 1 562.1 | 21 556.0 | 5 645 | 3.62 | 669 | 23.1 | 8 681 | 3.75 | 2.48 | 15.6 | ||
N179-H601 | 长6段2砂岩组 | 1 477.3 | 26 246.0 | 5 559 | 11.07 | 530 | 32.5 | 12 735 | 7.31 | 2.03 | 15.2 | ||
N218-H1 | 长8段1砂岩组 | 1 142.0 | 14 590.0 | 11 732 | 19.90 | 775 | 27.1 | 21 970 | 18.81 | 0.66 | 9.9 | ||
L83-H1 | 长6段3砂岩组 4小层 | 990.7 | 15 232.0 | 4 286 | 3.68 | 964 | 43.6 | 4 559 | 4 950 | 6.58 | 2.56 | 8.8 | |
B24-H1 | 长8段1砂岩组 | 774.0 | 6 530.9 | 2 662 | 2.91 | 689 | 12.1 | 5 469 | 7 225 | 9.32 | 0.90 | 4.1 | |
Z161-H701 | 长7段1砂岩组 | 1 299.2 | 31 270.0 | 5 296 | 9.55 | 626 | 31.0 | 13 066 | 14 124 | 8.88 | 2.21 | 13.8 | |
L208-H1 | 长2段2砂岩组 | 850.6 | 7 749.3 | 3 117 | 10.54 | 445 | 18.5 | 7 828 | 10.39 | 1.76 | 11.6 | ||
L208-H2 | 长2段2砂岩组 | 739.0 | 7 024.9 | 4 528 | 12.27 | 445 | 20.3 | 10 148 | 10 988 | 16.01 | 0.96 | 7.7 | |
L63-H202 | 长2段2砂岩组 | 728.0 | 6 216.3 | 3 707 | 8.12 | 426 | 15.8 | 7 991 | 7 196 | 9.83 | 0.86 | 6.6 |
Table 2
Statistics and dynamic analysis of main parameters for pressure build-up horizontal wells in HS and XF Oil Fields"
井号 | 层位 | 水平 段长/m | 入地 液量/m3 | 已产 时间/d | 阶段累计产油量/t | 日产油量/ t | 现返排率/ % | F-EUR/ t | 相关 系数 | 采收率/ % | 液油比/(m3/t) | 最大日产 液量/m3 | 平均返排 速度/(m3/d) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HP1 | 长7段 | 1 500 | 15 498 | 3 139 | 28 633 | 5.90 | 50.4 | 44 557 | 0.992 3 | 19.4 | 0.35 | 28.5 | 8.8 |
HP2 | 长7段 | 1 500 | 13 970 | 3 157 | 25 975 | 5.10 | 62.3 | 40 213 | 0.991 9 | 17.5 | 0.35 | 24.3 | 11.1 |
HP3 | 长7段 | 1 500 | 13 959 | 3 201 | 26 973 | 6.52 | 60.4 | 41 674 | 0.994 2 | 18.2 | 0.33 | 23.8 | 9.0 |
HP4 | 长7段 | 1 500 | 14 274 | 3 214 | 27 436 | 7.06 | 59.4 | 41 861 | 0.991 2 | 18.3 | 0.34 | 24.0 | 6.2 |
HP5 | 长7段 | 1 500 | 16 186 | 2 984 | 24 994 | 6.42 | 40.8 | 48 188 | 0.991 6 | 21.0 | 0.34 | 24.0 | 11.0 |
HP6 | 长7段 | 1 500 | 14 220 | 2 958 | 28 372 | 6.84 | 53.0 | 43 596 | 0.984 8 | 19.0 | 0.33 | 24.1 | 10.0 |
HP7 | 长7段 | 1 500 | 7 452 | 3 170 | 30 386 | 8.42 | 80.9 | 35 238 | 0.991 3 | 15.4 | 0.21 | 25.0 | 9.4 |
HP8 | 长7段 | 1 500 | 11 055 | 3 176 | 27 356 | 8.26 | 82.2 | 32 096 | 0.998 8 | 14.0 | 0.34 | 23.4 | 9.0 |
HP9 | 长7段 | 1 500 | 11 332 | 2 952 | 27 552 | 6.90 | 87.5 | 30 189 | 0.988 6 | 13.2 | 0.38 | 30.1 | 15.5 |
HP10 | 长7段 | 1 500 | 20 057 | 2 937 | 21 268 | 4.61 | 73.7 | 25 622 | 0.991 8 | 11.2 | 0.78 | 26.0 | 12.2 |
NP1 | 长7段 | 1 206 | 9 628 | 3 142 | 12 835 | 3.94 | 53.4 | 17 088 | 0.982 1 | 9.3 | 0.56 | 9.0 | 6.1 |
NP6 | 长7段 | 1 800 | 19 578 | 2 538 | 17 653 | 5.39 | 36.0 | 25 305 | 0.994 6 | 9.2 | 0.77 | 15.9 | 7.6 |
NP7 | 长7段 | 1 800 | 23 089 | 2 544 | 9 997 | 3.16 | 24.8 | 19 168 | 0.996 8 | 7.0 | 1.20 | 16.2 | 14.0 |
NP8 | 长7段 | 1 800 | 16 236 | 2 473 | 19 305 | 4.71 | 43.1 | 37 891 | 0.991 2 | 13.8 | 0.43 | 20.8 | 9.9 |
NP9 | 长7段 | 1 800 | 20 897 | 2 445 | 12 372 | 4.81 | 29.1 | 25 028 | 0.989 9 | 9.1 | 0.83 | 17.4 | 11.8 |
平均 | 15 162 | 2 935 | 22 740 | 5.87 | 55.8 | 33 848 | 0.991 4 | 14.4 | 0.50 | 22.2 | 10.1 |
[1] |
李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13.
doi: 10.3969/j.issn.1672-7703.2020.02.001 |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13.
doi: 10.3969/j.issn.1672-7703.2020.02.001 |
|
[2] |
雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019, 46(1): 139-145.
doi: 10.11698/PED.2019.01.14 |
LEI Qun, WEND Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1): 139-145. | |
[3] |
金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835.
doi: 10.7623/syxb202107001 |
JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835.
doi: 10.7623/syxb202107001 |
|
[4] | 陈祥, 王敏, 严永新, 等. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. |
CHEN Xiang, WANG Min, YAN Yongxin, et al. Accumulation conditions for continental shale oil and gas in the Biyang Depression[J]. Oil & Gas Geology, 2011, 32(4): 568-576. | |
[5] | 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质, 2021, 42(5): 1181-1187. |
Jiao fangzheng. Research on shale oil fracture net sweep in Ordos Basin and its application in volume development[J]. Oil & Gas Geology, 2021, 42(5): 1181-1187. | |
[6] | 路向伟, 王力, 郑奎, 等. X油田A83 C7页岩油储层高效开发技术评价与分析[J]. 化学工程与装备, 2021, 1(10): 95-97. |
LU Xiangwei, WANG Li, ZHENG Kui, etc. Evaluation and analysis of high efficiency development technology for A83 C7 shale oil reservoir in X oilfield[J]. Chemical Engineering & Equipment, 2021, 1(10) : 95-97. | |
[7] | 常凌云. 基于决策树算法的压裂井判别及效果预测方法研究[J]. 中国管理信息化, 2021, 24(6): 113-114. |
Chang Lingyun. Research on decision tree algorithm-based method for distinguishing and predicting fracturing wells[J]. China Management Informationization, 2021, 24(6): 113-114. | |
[8] | 李凯凯, 安然, 岳潘东, 等. 安83区页岩油水平井大规模蓄能体积压裂技术[J]. 石油钻探技术, 2021, 49(4): 125-129. |
LI Kaikai, AN Ran, YUE Pandong, et al. Large scale energy storage volumetric fracturing technology for horizontal wells in the An 83 shale reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 125-129. | |
[9] | 张衍君, 邹易, 董正亮, 等. 页岩油储层压裂井间干扰条件下受干扰井排采特征: 以吉木萨尔页岩油储层为例[J]. 石油钻采工艺, 2023, 45(1): 108-115. |
ZHANG Yanjun, ZOU Yi, DONG Zhengliang, et al. Production characteristic of interfered well under inter-well fracturing interference in shale oil reservoir: A case study on Jimusaer shale oil reservoir[J]. Oil Drilling & Production Technology, 2023, 45(1): 108-115. | |
[10] | 王欣, 才博, 李帅, 等. 中国石油油气藏储层改造技术历程与展望[J]. 石油钻采工艺, 2023, 45(1): 67-75. |
WANG Xin, CAI Bo, LI Shuai, et al. Development process and prospect of CNPC's reservoir stimulation technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 67-75. | |
[11] | 张矿生, 王文雄, 徐晨, 等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程, 2013, 13(35): 10475-10480. |
ZHANG Kuangsheng, WANG Wenxiong, XU Cheng, et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 13(35): 10475-10480. | |
[12] | 张芮菡, 张烈辉, 卢晓敏, 等. 低渗透裂缝性油藏压裂水平井产能动态分析[J]. 科学技术与工程, 2014, 14(16): 41-48. |
ZHANG Ruihan, ZHANG Liehui, LU Xiaomin, et al. Deliverability analysis of fractured horizontal wells in low permeability fractured reservoir[J]. Science Technology and Engineering, 2014, 14(16): 41-48. | |
[13] | 刘子雄, 王艳红, 高杰, 等. 基于压裂返排数据的有效破裂体积计算方法[J]. 石油地质与工程, 2019, 33(2): 112-115. |
LIU Zixiong, WANG Yanhong, GAO Jie, et al. New calculation method of effective fracture volume based on fracture flowback data[J]. Petroleum Geology & Engineering, 2019, 33(2): 112-115. | |
[14] | BUCKLEY S E, LEVERETT M C. Mechanism of fluid displacements in sands[J]. Transactions of the AIME, 1942, 146(1): 107-116. |
[15] | WELGE H J. A simplified method for computing oil recovery by gas or water drive[J]. Journal of Petroleum Technology, 1952, 4(4): 91-98. |
[16] |
赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
doi: 10.11698/PED.2020.01.01 |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. | |
[17] | 许宁, 满安静, 徐萍, 等. 非常规油藏补能提采开发方式研究进展及路径优选[J]. 中外能源, 2023, 28(8): 38-42. |
XU Ning, MAN Anjing, XU Ping, et al. Research progress and path optimization of enhanced oil recovery by energy supplement in unconventional reservoirs[J]. Sino-Global Energy, 2023, 28(8): 38-42. | |
[18] |
焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078.
doi: 10.11698/PED.2020.06.01 |
JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078. | |
[19] |
邱润东, 顾春元, 薛佩雨, 等. 不同渗透率砂岩岩心在纳米流体中的渗吸特征[J]. 石油勘探与开发, 2022, 49(2): 330-337.
doi: 10.11698/PED.2022.02.11 |
QIU Rundong, GU Chunyuan, XUE Peiyu, et al. Imbibition characteristics of sandstone cores with different permeabilities in nanofluids[J]. Petroleum Exploration and Development, 2022, 49(2): 330-337. | |
[20] |
贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452.
doi: 10.11698/PED.2021.03.01 |
JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. | |
[21] |
黄兴, 窦亮彬, 左雄娣, 等. 致密油藏裂缝动态渗吸排驱规律[J]. 石油学报, 2021, 42(7): 924-935.
doi: 10.7623/syxb202107007 |
HUANG Xing, DOU Liangbin, ZUO Xiongdi, et al. Dynamic imbibition and drainage law of fractures in tight reservoirs[J]. Acta Petrolei Sinica, 2021, 42(7): 924-935. | |
[22] |
杜猛, 杨正明, 吕伟峰, 等. 基质裂缝耦合下的致密油/页岩油动态渗流实验[J]. 石油勘探与开发, 2024, 51(2): 356-366.
doi: 10.11698/PED.2023453 |
DU Meng, YANG Zhengming, LYU Weifeng, et al. Experiment of dynamic seepage of tight/shale oil under matrix fracture coupling[J]. Petroleum Exploration and Development, 2024, 51(2): 356-366. | |
[23] | 虞绍永. 页岩及致密油气藏工程方法[M]. 北京: 石油工业出版社, 2018. |
YU Shaoyong. Shale and tight reservoir engineering method[M]. Beijing: Petroleum Industry Press, 2018. | |
[24] |
雷浩, 郑有恒, 何建华, 等. 页岩油藏流体渗流特征物理模拟新方法[J]. 石油学报, 2021, 42(10): 1346-1356.
doi: 10.7623/syxb202110008 |
LEI Hao, ZHENG Youheng, HE Jianhua, et al. A new method for physical simulation of flow characteristics of fluids In shale oil reservoirs[J]. Acta Petrolei Sinica, 2021, 42(10): 1346-1356.
doi: 10.7623/syxb202110008 |
|
[25] |
刘惠民, 于炳松, 谢忠怀, 等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义: 以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343.
doi: 10.7623/syxb201812002 |
LIU Huimin, YU Bingsong, XIE Zhonghuai, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: A case study of Jiyang depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343.
doi: 10.7623/syxb201812002 |
|
[26] |
张顺, 刘惠民, 王敏, 等. 东营凹陷页岩油储层孔隙演化[J]. 石油学报, 2018, 39(7): 754-766.
doi: 10.7623/syxb201807003 |
ZHANG Shun, LIU Huimin, WANG Min, et al. Pore evolution of Shale oil reservoirs in Dongying sag[J]. Acta Petrolei Sinica, 2018, 39(7): 754-766.
doi: 10.7623/syxb201807003 |
|
[27] |
戚超, 王晓琦, 王威, 等. 页岩储层微观裂缝三维精细表征方法[J]. 石油学报, 2018, 39(10): 1175-1185.
doi: 10.7623/syxb201810009 |
QI Chao, WANG Xiaoqi, WANG Wei, et al. Three dimensional fine characterization method of micro fractures in shale reservoirs[J]. Acta Petrolei Sinica, 2018, 39(10): 1175-1185.
doi: 10.7623/syxb201810009 |
|
[28] |
周福建, 苏航, 梁星原, 等. 致密油储集层高效缝网改造与提高采收率一体化技术[J]. 石油勘探与开发, 2019, 46(5): 1007-1014.
doi: 10.11698/PED.2019.05.20 |
ZHOU Fujian, SU Hang, LIANG Xingyuan, et al. Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks[J]. Petroleum Exploration and Development, 2019, 46(5): 1007-1014. |
[1] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[2] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[3] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[4] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[5] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[6] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[7] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[8] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[9] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[10] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[11] | TANG Jiandong, WANG Zhilin, GE Zhengjun. CO2 flooding technology and its application in Jiangsu Oilfield in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 18-25. |
[12] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[13] | SHI Yan, XIE Junhui, GUO Xiaoting, WU Tong, CHEN Dequan, SUN Lin, DU Daijun. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82. |
[14] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
[15] | HE Dongbo, REN Lu, HAO Jie, LIU Xiaoping, CAO Qian. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725. |
|