Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 597-604.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.008
• Methodological Theory • Previous Articles Next Articles
QIN Nan1(), GAN Xiaofei2, LUO Yu1, LIU Xiaoxu1, WEN Bin3(
), CHEN Xingyu3
Received:
2024-08-08
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
QIN Nan,GAN Xiaofei,LUO Yu, et al. Experimental study on effect of N2 on physical parameters and phase equilibrium patterns of CO2-rich injection gas[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 597-604.
Table 2
Experimental measurement results of physical parameters for CO2-rich injection gas"
样品编号 | 压力/ MPa | 温度/ ℃ | 偏差 因子 | 体积系数/ (10-4 mL/mL) | 密度/ (kg/m3) | 黏度/ (mPa·s) |
---|---|---|---|---|---|---|
样品1 | 2 | 20 | 0.909 3 | 462.76 | 36.78 | 0.016 1 |
5 | 30 | 0.790 2 | 166.35 | 102.32 | 0.017 7 | |
10 | 40 | 0.629 1 | 68.40 | 248.82 | 0.023 1 | |
15 | 50 | 0.585 6 | 43.80 | 388.60 | 0.031 3 | |
20 | 60 | 0.619 5 | 35.83 | 475.02 | 0.038 0 | |
25 | 70 | 0.675 1 | 32.18 | 529.04 | 0.042 9 | |
35 | 80 | 0.774 9 | 27.15 | 626.99 | 0.052 4 | |
45 | 90 | 0.880 9 | 24.68 | 689.58 | 0.059 5 | |
55 | 100 | 0.983 8 | 23.18 | 734.43 | 0.065 3 | |
样品2 | 2 | 20 | 0.947 4 | 481.28 | 31.19 | 0.016 7 |
5 | 30 | 0.888 5 | 186.70 | 80.40 | 0.018 0 | |
10 | 40 | 0.827 5 | 89.81 | 167.13 | 0.020 7 | |
15 | 50 | 0.814 6 | 60.82 | 246.80 | 0.024 3 | |
20 | 60 | 0.833 3 | 48.11 | 312.00 | 0.028 2 | |
25 | 70 | 0.868 4 | 41.31 | 363.36 | 0.031 8 | |
35 | 80 | 0.941 5 | 32.93 | 455.90 | 0.038 9 | |
45 | 90 | 1.026 9 | 28.72 | 522.65 | 0.044 9 | |
55 | 100 | 1.113 8 | 26.19 | 573.15 | 0.050 0 | |
样品3 | 2 | 20 | 0.965 3 | 489.93 | 28.15 | 0.017 1 |
5 | 25 | 0.926 1 | 191.22 | 72.11 | 0.018 0 | |
10 | 31 | 0.889 2 | 93.65 | 147.37 | 0.020 1 | |
15 | 37 | 0.882 3 | 63.17 | 218.19 | 0.023 0 | |
20 | 43 | 0.900 1 | 49.27 | 280.08 | 0.026 3 | |
25 | 49 | 0.930 5 | 41.52 | 332.39 | 0.029 6 | |
30 | 55 | 0.967 1 | 36.63 | 376.30 | 0.032 8 | |
35 | 61 | 1.008 6 | 33.34 | 413.40 | 0.035 7 | |
40 | 67 | 1.053 8 | 31.03 | 445.08 | 0.038 4 | |
45 | 73 | 1.096 5 | 29.21 | 472.45 | 0.040 9 | |
50 | 79 | 1.139 2 | 27.78 | 496.37 | 0.043 2 | |
55 | 85 | 1.187 1 | 26.77 | 517.47 | 0.045 3 | |
样品4 | 2 | 20 | 0.976 7 | 495.42 | 27.71 | 0.017 3 |
5 | 25 | 0.951 1 | 196.27 | 69.94 | 0.018 2 | |
10 | 31 | 0.930 1 | 97.90 | 140.22 | 0.020 1 | |
15 | 37 | 0.934 8 | 66.89 | 205.23 | 0.022 6 | |
20 | 43 | 0.958 6 | 52.44 | 261.76 | 0.025 5 | |
25 | 49 | 0.994 5 | 44.35 | 309.52 | 0.028 3 | |
30 | 55 | 1.037 1 | 39.26 | 349.66 | 0.031 1 | |
35 | 61 | 1.083 0 | 35.78 | 383.61 | 0.033 6 | |
40 | 67 | 1.130 4 | 33.27 | 412.65 | 0.036 0 | |
45 | 73 | 1.177 9 | 31.36 | 437.77 | 0.038 1 | |
50 | 79 | 1.225 0 | 29.86 | 459.74 | 0.040 1 | |
55 | 85 | 1.271 3 | 28.65 | 479.15 | 0.042 0 | |
样品5 | 2 | 20 | 0.990 2 | 501.96 | 25.10 | 0.017 8 |
5 | 25 | 0.982 8 | 202.68 | 62.16 | 0.018 5 | |
10 | 31 | 0.986 0 | 103.72 | 121.49 | 0.020 1 | |
15 | 37 | 1.005 3 | 71.89 | 175.28 | 0.022 0 | |
20 | 43 | 1.035 7 | 56.62 | 222.52 | 0.024 2 | |
25 | 49 | 1.073 1 | 47.83 | 263.45 | 0.026 5 | |
30 | 55 | 1.114 5 | 42.16 | 298.84 | 0.028 7 | |
35 | 61 | 1.157 9 | 38.23 | 329.56 | 0.030 8 | |
40 | 67 | 1.202 1 | 35.36 | 356.41 | 0.032 8 | |
45 | 73 | 1.246 2 | 33.16 | 380.06 | 0.034 7 | |
50 | 79 | 1.289 8 | 31.42 | 401.06 | 0.036 5 | |
55 | 85 | 1.332 6 | 30.01 | 419.84 | 0.038 2 |
[1] | 姚红生, 高玉巧, 郑永旺, 等. CO2快速吞吐提高页岩油采收率现场试验[J]. 天然气工业, 2024, 44(3): 10-19. |
YAO Hongsheng, GAO Yuqiao, ZHENG Yongwang, et al. Field tests and effect of CO2 rapid huff-n-puff to enhance shale oil recovery[J]. Natural Gas Industry, 2024, 44(3): 10-19. | |
[2] | XIONG W, ZHANG L H, ZHAO Y L, et al. Compositional simulation for carbon storage in porous media using an electrolyte association equation of state[J]. SPE Journal, 2024, 29(6): 3314-3336. |
[3] | 胡婷, 芮振华. CO2地质利用与封存中碳迁移及其相态分布规律[J]. 天然气工业, 2024, 44(4): 56-67. |
HU Ting, RUI Zhenhua. Carbon migration and phase distribution patterns in CO2 geological utilization and storage[J]. Natural Gas Industry, 2024, 44(4): 56-67. | |
[4] | 张烈辉, 熊伟, 赵玉龙, 等. 衰竭底水气藏注CO2提高天然气采收率与碳封存机理[J]. 天然气工业, 2024, 44(4): 25-38. |
ZHANG Liehui, XIONG Wei, ZHAO Yulong, et al. Mechanism of CO2 injection to enhance gas recovery and carbon storage in depleted bottom-water gas reservoirs[J]. Natural Gas Industry, 2024, 44(4): 25-38. | |
[5] | 侯大力, 龚凤鸣, 陈泊, 等. 底水砂岩气藏注CO2驱气提高采收率机理及埋存效果[J]. 天然气工业, 2024, 44(4): 93-103. |
HOU Dali, GONG Fengming, CHEN Bo, et al. Gas recovery enhancement and CO2 storage effects by CO2 flooding in bottom-water sandstone gas reservoir[J]. Natural Gas Industry, 2024, 44(4): 93-103. | |
[6] | 阮洪江. 富含凝析油的凝析气藏注CO2相态特征研究[J]. 重庆科技学院学报(自然科学版), 2022, 24(4): 26-29. |
RUAN Hongjiang. Study on phase characteristics of CO2 injection in condensate gas reservoir rich in condensate oil[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2022, 24(4): 26-29. | |
[7] | 陈欢, 曹砚锋, 幸雪松, 等. 高含CO2多组分气体物性参数变化规律实验研究[C]//2023油气田勘探与开发国际会议论文集Ⅲ. 西安: 陕西省石油学会, 2023: 313-330. |
CHEN Huan, CAO Yanfeng, XING Xuesong, et al. Experimental study on the changes of physical parameters of high CO2-Content multi-component gas[C]//International Field Exploration and Development Conference 2023. Xi’an: Shaan Xi Petroleum Society, 2023: 313-330. | |
[8] | 卞小强, 杜志敏. 高含CO2天然气相变及其物性参数实验测试[J]. 新疆石油地质, 2013, 34(1): 63-65. |
BIAN Xiaoqiang, DU Zhimin. Experimental study on the phase behavior and fluid physical parameters of high CO2⁃content natural gas[J]. Xinjiang Petroleum Geology, 2013, 34(1): 63-65. | |
[9] | 喻西崇, 李志军, 郑晓鹏, 等. 含杂质CO2体系相态特性及CO2低温液态储存蒸发特性实验研究[J]. 中国海上油气, 2009, 21(3): 196-199. |
YU Xichong, LI Zhijun, ZHENG Xiaopeng, et al. Experimental research on phase equilibrium and evaporation characteristics of low temperature liquid phase storage for CO2 with some impurities[J]. China Offshore Oil and Gas, 2009, 21(3): 196-199. | |
[10] | 侯大力, 高黎惠, 刘浩成, 等. 近临界态凝析气藏地层流体特殊相态行为[J]. 天然气工业, 2013, 33(11): 68-73. |
HOU Dali, GAO Lihui, LIU Haocheng, et al. Dynamic phase behavior of near-critical condensate gas reservoir fluids[J]. Natural Gas Industry, 2013, 33(11): 68-73. | |
[11] | 韩鑫, 侯大力, 赵锐, 等. 近临界挥发油藏CO2-近临界挥发油-地层水三相相态实验[J]. 大庆石油地质与开发, 2022, 41(6): 117-123. |
HAN Xin, HOU Dali, ZHAO Rui, et al. Three⁃phase experiments of CO2⁃near critical volatile oil⁃formation water in near⁃critical volatile oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6): 117-123. | |
[12] | GUO J J, XIONG W, HU Q Y, et al. Stability analysis and two-phase flash calculation for confined fluids in nanopores using a novel phase equilibrium calculation framework[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2306-2322. |
[13] | XIONG W, ZHANG L H, ZHAO Y L, et al. A generalized equation of state for associating fluids in nanopores: Application to CO2-H2O, CH4-H2O, CO2-CH4, and CO2-CH4-H2O systems and implication for extracting dissolved CH4 by CO2 injection[J]. Chemical Engineering Science, 2021, 229: 116034. |
[14] | BIAN X Q, XIONG W, KASTHURIARACHCHI D T K, et al. Phase equilibrium modeling for carbon dioxide solubility in aqueous sodium chloride solutions using an association equation of state[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10570-10578. |
[15] | XIONG W, BIAN X Q, LIU Y B. Phase equilibrium modeling for methane solubility in aqueous sodium chloride solutions using an association equation of state[J]. Fluid Phase Equilibria, 2020, 506: 112416. |
[16] | ZHAO Y L, XIONG W, ZHANG L H, et al. Phase equilibrium modeling for interfacial tension of confined fluids in nanopores using an association equation of state[J]. The Journal of Supercritical Fluids, 2021, 176: 105322. |
[17] | 卞小强, 熊伟, 蔺嘉昊, 等. 基于GE混合规则的统计缔合流体方程预测CO2在水中的溶解度[J]. 石油化工, 2019, 48(10): 1035-1039. |
BIAN Xiaoqiang, XIONG Wei, LIN Jiahao, et al. Prediction of the solubility of carbon dioxide in water using statistical associating fluid equation of state based on the GE mixing rule[J]. Petrochemical Technology, 2019, 48(10): 1035-1039. | |
[18] | XIONG W, ZHAO Y L, QIN J H, et al. Phase equilibrium modeling for confined fluids in nanopores using an association equation of state[J]. The Journal of Supercritical Fluids, 2021, 169: 105118. |
[19] | XIONG W, ZHANG L H, TIAN Y, et al. Phase equilibrium modeling for carbon dioxide Capture and Storage (CCS) fluids in brine using an electrolyte association equation of state[J]. Chemical Engineering Science, 2023, 275: 118723. |
[20] | 国家标准化管理委员会. 油气藏流体物性分析方法: [S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People’s Republic of China. Analysis method for reservoir fluid physical properties: [S]. Beijing: Standards Press of China, 2020. | |
[21] | 卞小强, 熊伟. CH4-H2O和CO2-H2O二元体系的交叉缔合作用研究[C]//2018年全国天然气学术年会论文集(05储运、安全环保及综合). 福州: 中国石油学会天然气专业委员会, 2018: 34-45. |
BIAN Xiaoqiang, XIONG Wei. Study on the cross association of CH4-H2O and CO2-H2O binary systems[C]// Proceedings of 2018 National Natural Gas Academic Annual Meeting (05: Storage & Transportation, Safety, Environmental Protection and Comprehensive). Fuzhou: Natural Gas Professional Committee of Chinese Petroleum Society, 2018: 34-45. | |
[22] | XIONG W, ZHANG L H, ZHAO Y L, et al. Prediction of the viscosity of natural gas at high temperature and high pressure using free-volume theory and entropy scaling[J]. Petroleum Science, 2023, 20(5): 3210-3222. |
[23] | PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
[1] | ZHANG Huan, CHAI Haonan, ZHAO Hongbao, DU Shuangli, LI Yitao. Mechanism of heavy alkane influence on CO2 and CH4 competitive adsorption in shale [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 579-588. |
[2] | ZHANG Qian, FAN Zhaoyu, WANG Qin, TANG Huimin, HE Zhihui. Quantitative study on multi-factor production capacity chart for ultra-high temperature, high pressure, and low permeability gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 686-693. |
[3] | HU Junjie, LU Cong, GUO Jianchun, ZENG Bo, GUO Xingwu, MA Li, SUN Yuduo. Research and application of fiber fracturing and fiber temporary plugging technology for deep shale gas [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 515-521. |
[4] | CHEN Weiming, JIANG Lin, LUO Tongtong, LI Yue, WANG Jianhua. Research on deep learning-based fracture network inversion method for shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 142-151. |
[5] | NI Feng,ZHU Feng,MENG Qingli. Analysis of knee fold structure model in Nanchuan Block of southeastern Chongqing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 373-381. |
[6] | WANG Min,CAO Yue,LI Wancai,ZHAO Wenqi,WANG Wenyong,SONG Yuying. Establishing classification standards for volcanic reservoirs based on pore structure and nuclear magnetic logging: A case study of Chaganhua Gas Field in Songnan Fault Depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 216-223. |
[7] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[8] | HOU Dali, HAN Xin, TANG Hongming, GUO Jianchun, GONG Fengming, SUN Lei, QIANG Xianyu. Primary research on expression of kerogen in Longmaxi Shale and its adsorption characteristics [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646. |
[9] | HOU Mengru,LIANG Bing,SUN Weiji,LIU Qi,ZHAO Hang. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107. |
[10] | HU Hao,ZHOU Hong,LONG Hui,FAN Tianyou,WU Hongbo,WU Ya,WANG Min,YANG Tongshui. Comprehensive potential analysis and development suggestions of old gas fields in Sichuan Basin in the later stage of development: A case from Sinian gas reservoir in W gas field [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 877-885. |
[11] | LI Jinghui,HAN Xin,HUANG Sijing,YU Yangyang,QIANG Xianyu,GU Kangfu,HOU Dali. Molecular simulation of adsorption law for shale kerogen [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461. |
[12] | LIU Lu,WANG Yongfei,ZHAN Zedong,XIE Jinfeng. Main control factors of horizontal wells in J2s2 tight sandstone gas reservoir of Xinchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 890-896. |
[13] | XIA Haibang,BAO Kai,WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 390-394. |
[14] | JIANG Yongping,YANG Song. New technology of dewatering gas recovery for CBM wells in southern Yanchuan Block, eastern margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 384-389. |
[15] | YANG Huaicheng,XIA Sujiang,GAO Qiguo,MAO Guoyang. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 348-355. |
|