Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (4): 474-483.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.009
• Comprehensive Research • Previous Articles Next Articles
LIU Honglin1,2,3(),ZHOU Shangwen1,2,3,LI Xiaobo1,2,3
Received:
2022-04-08
Online:
2023-09-01
Published:
2023-08-26
CLC Number:
Honglin LIU,Shangwen ZHOU,Xiaobo LI. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483.
Table 1
Key parameters of testing samples from shale gas wells"
井号 | 自变量X | 因变量Y | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
脆性 矿物/ % | 储层 厚度/ m | 总有机碳/ % | 孔隙度/ % | 总含 气量/ (m3·t-1) | 含气饱和度/ % | 吸附 含气量/ (m3·t-1) | 资源丰度/ (108 m3·km-2) | 单井 储量/ 108 m3 | 水平 段长/ m | 压裂 液量/ m3 | 加砂量/ t | 最小 施工排量/ (m3·min-1) | 最大 施工排量/ (m3·min-1) | 井口 压力/MPa | IP30/ 104 m3 | 单井 可采储量/ 108 m3 | 测试 日产量/ 104 m3 | 生产 天数/ d | 储量 动用程度/ % | ||
YS108H1-2 | 62 | 72 | 2.3 | 6.3 | 5.5 | 54.3 | 3.1 | 9.0 | 4.5 | 1 408 | 34 569 | 1 381 | 3.5 | 10.7 | 31.7 | 13.31 | 0.67 | 18.60 | 1 976 | 14.9 | |
YS108H1-4 | 63 | 71 | 2.2 | 5.9 | 5.3 | 52.1 | 2.5 | 9.2 | 4.5 | 1 404 | 36 982 | 1 315 | 8.0 | 11.3 | 29.7 | 10.99 | 1.54 | 24.23 | 2 147 | 34.2 | |
YS108H1-8 | 58 | 70 | 2.5 | 6.1 | 5.6 | 51.4 | 3.1 | 8.8 | 4.6 | 1 478 | 36 563 | 1 288 | 9.3 | 10.8 | 15.8 | 8.92 | 1.08 | 26.08 | 2 147 | 23.5 | |
YS108H2-2 | 58 | 69 | 2.4 | 6.3 | 5.6 | 56.0 | 2.5 | 8.9 | 4.5 | 1 433 | 38 322 | 2 096 | 12.2 | 14.2 | 23.6 | 9.09 | 0.81 | 14.89 | 1 695 | 18.0 | |
YS108H2-3 | 58 | 70 | 2.7 | 6.0 | 5.5 | 52.5 | 3.5 | 8.8 | 6.0 | 1 900 | 18 759 | 1 055 | 12.8 | 13.5 | 27.3 | 8.12 | 0.55 | 35.14 | 1 290 | 9.2 | |
YS108H2-4 | 56 | 70 | 2.4 | 5.9 | 5.8 | 53.4 | 2.9 | 8.8 | 5.1 | 1 630 | 41 819 | 2 306 | 13.3 | 14.0 | 16.5 | 15.61 | 1.26 | 29.03 | 1 693 | 24.7 | |
YS108H2-5 | 55 | 70 | 2.8 | 5.9 | 5.5 | 52.0 | 3.4 | 8.9 | 3.6 | 1 154 | 29 240 | 1 443 | 9.8 | 14.2 | 21.6 | 8.04 | 0.89 | 24.75 | 1 701 | 24.7 | |
YS108H3-2 | 56 | 72 | 2.6 | 5.9 | 5.5 | 50.5 | 3.3 | 9.0 | 4.8 | 1 491 | 37 770 | 1 576 | 10.2 | 12.7 | 20.9 | 15.85 | 1.10 | 17.50 | 2 280 | 22.9 | |
YS108H6-5 | 58 | 62 | 2.8 | 5.2 | 4.5 | 48.5 | 3.2 | 6.7 | 3.7 | 1 515 | 34 376 | 987 | 6.0 | 11.0 | 15.7 | 8.28 | 0.87 | 15.79 | 2 257 | 23.5 | |
YS108H8-5 | 54 | 62 | 2.7 | 4.6 | 5.0 | 46.0 | 3.2 | 6.8 | 4.0 | 1 665 | 32 217 | 1 893 | 10.0 | 13.2 | 11.6 | 2.12 | 0.51 | 10.87 | 1 871 | 12.8 | |
YS108H9-2 | 56 | 60 | 2.6 | 4.6 | 4.7 | 44.3 | 3.0 | 6.8 | 3.8 | 1 570 | 36 756 | 1 630 | 10.3 | 12.1 | 11.1 | 4.13 | 0.47 | 12.23 | 1 533 | 12.4 | |
YS108H9-3 | 56 | 61 | 2.7 | 4.5 | 4.9 | 45.5 | 2.6 | 6.7 | 4.0 | 1 650 | 44 452 | 2 113 | 10.0 | 12.3 | 12.9 | 4.08 | 0.83 | 11.25 | 1 540 | 20.8 | |
YS108H9-5 | 56 | 61 | 2.7 | 4.7 | 4.9 | 44.7 | 3.1 | 6.7 | 3.3 | 1 350 | 31 031 | 1 442 | 10.2 | 12.1 | 13.7 | 3.72 | 0.33 | 13.19 | 1 543 | 10.0 | |
YS108H11-1 | 49 | 69 | 2.3 | 4.9 | 4.9 | 52.0 | 3.2 | 8.0 | 3.9 | 1 383 | 26 093 | 1 209 | 9.3 | 11.4 | 13.0 | 9.16 | 1.09 | 14.00 | 2 183 | 27.9 | |
YS108H13-2 | 54 | 71 | 2.6 | 5.7 | 4.9 | 53.8 | 2.8 | 8.4 | 3.3 | 1 100 | 37 900 | 2 250 | 11.4 | 13.0 | 21.0 | 9.74 | 0.82 | 17.70 | 1 065 | 24.8 | |
YS108H13-3 | 54 | 71 | 2.7 | 5.7 | 5.2 | 53.8 | 2.5 | 8.3 | 3.4 | 1 140 | 40 497 | 2 387 | 11.1 | 12.7 | 22.0 | 11.68 | 1.00 | 16.64 | 1 035 | 29.4 | |
YS108H13-4 | 55 | 53 | 2.5 | 5.1 | 4.2 | 54.4 | 2.8 | 5.4 | 2.5 | 1 330 | 46 500 | 2 750 | 11.3 | 12.2 | 19.1 | 8.02 | 0.99 | 32.50 | 1 035 | 39.6 | |
YS108H19-2 | 55 | 54 | 3.0 | 5.3 | 4.6 | 55.3 | 2.5 | 5.4 | 3.0 | 1 560 | 42 618 | 1 879 | 11.2 | 13.3 | 29.2 | 6.27 | 0.36 | 22.90 | 1 432 | 12.0 | |
YS108H19-4 | 68 | 53 | 2.7 | 5.4 | 4.2 | 54.5 | 3.3 | 5.4 | 2.5 | 1 340 | 37 693 | 1 725 | 12.1 | 14.1 | 29.5 | 5.97 | 0.38 | 27.40 | 1 426 | 15.2 | |
YS108H19-6 | 67 | 53 | 2.8 | 5.1 | 4.4 | 56.4 | 2.2 | 5.4 | 1.8 | 970 | 25 031 | 1 079 | 11.8 | 13.1 | 14.4 | 6.95 | 0.31 | 37.30 | 1 426 | 17.2 |
Table 2
Interpretation of total variance of testing samples from shale gas wells"
成分 | 初始特征值 % | 提取载荷平方和 % | |||||
---|---|---|---|---|---|---|---|
总计 | 方差百分比 | 累积 | 总计 | 方差百分比 | 累积 | ||
1 | 6.00 | 30.03 | 30.03 | 6.00 | 30.03 | 30.03 | |
2 | 4.02 | 20.10 | 50.16 | 4.02 | 20.10 | 50.13 | |
3 | 2.81 | 14.00 | 64.25 | 2.81 | 14.00 | 64.13 | |
4 | 2.07 | 10.30 | 74.64 | 2.07 | 10.30 | 74.43 | |
5 | 1.43 | 7.15 | 81.79 | 1.43 | 7.15 | 81.58 | |
6 | 0.93 | 4.67 | 86.47 | ||||
7 | 0.68 | 3.42 | 89.89 | ||||
15 | 0.02 | 0.09 | 99.93 |
Table 3
Composition matrix of testing samples from shale gas wells"
标准化的X变量 | 主成分 | ||||
---|---|---|---|---|---|
PCA1 | PCA 2 | PCA 3 | PCA 4 | PCA 5 | |
Z-score(优质储层厚度) | 0.837 | 0.080 | -0.101 | 0.308 | -0.220 |
Z-score(资源丰度) | 0.795 | 0.382 | 0.019 | 0.370 | -0.108 |
Z-score(井口压力) | 0.738 | 0.075 | -0.155 | -0.108 | 0.049 |
Z-score(总有机碳) | -0.663 | -0.234 | -0.039 | -0.144 | 0.242 |
Z-score(累计产气) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(IP30) | 0.141 | 0.901 | -0.012 | -0.111 | -0.012 |
Z-score(孔隙度) | 0.463 | 0.752 | 0.152 | -0.009 | 0.133 |
Z-score(含气量) | 0.459 | 0.636 | 0.188 | 0.400 | 0.103 |
Z-score(主压裂用液量) | -0.012 | 0.022 | 0.966 | 0.074 | -0.008 |
Z-score(改造段数) | -0.026 | 0.000 | 0.962 | 0.131 | -0.057 |
Z-score(加砂量) | -0.107 | 0.126 | 0.916 | 0.012 | 0.257 |
Z-score(吸附气含量) | -0.097 | 0.460 | -0.134 | 0.722 | -0.062 |
Z-score(含气饱和度) | -0.168 | 0.291 | 0.117 | -0.686 | 0.311 |
Z-score(水平段长) | 0.141 | -0.206 | 0.245 | 0.680 | 0.150 |
Z-score(单井储量) | 0.637 | 0.134 | 0.121 | 0.670 | 0.016 |
Z-score(脆性矿物含量) | -0.320 | 0.025 | -0.321 | -0.566 | -0.062 |
Z-score(最大排量) | -0.156 | 0.145 | 0.030 | 0.020 | 0.889 |
Z-score(最小排量) | 0.042 | -0.184 | -0.015 | -0.024 | 0.841 |
Z-score(井深) | -0.133 | 0.514 | 0.128 | 0.124 | 0.577 |
Table 4
Principal component score coefficient matrix of testing samples from shale gas wells"
标准化的X变量 | 成分得分系数 | ||||
---|---|---|---|---|---|
资源品质指标 | 产量指标 | 改造程度指标 | 储层质量指标 | 压裂施工指标 | |
Z-score(优质储层厚度) | 0.837 | 0.080 | -0.101 | 0.308 | -0.220 |
Z-score(资源丰度) | 0.795 | 0.382 | 0.019 | 0.370 | -0.108 |
Z-score(井口压力) | 0.738 | 0.075 | -0.155 | -0.108 | 0.049 |
Z-score(总有机碳) | -0.663 | -0.234 | -0.039 | -0.144 | 0.242 |
Z-score(累计产气) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(IP30) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(孔隙度) | 0.463 | 0.752 | 0.152 | -0.009 | 0.133 |
Z-score(含气量) | 0.459 | 0.636 | 0.188 | 0.400 | 0.103 |
Z-score(主压裂用液量) | -0.012 | 0.022 | 0.966 | 0.074 | -0.008 |
Z-score(改造段数) | -0.026 | 0.000 | 0.962 | 0.131 | -0.057 |
Z-score(加砂量) | -0.107 | 0.126 | 0.916 | 0.012 | 0.257 |
Z-score(吸附气含量) | -0.097 | 0.460 | -0.134 | 0.722 | -0.062 |
Z-score(含气饱和度) | -0.168 | 0.291 | 0.117 | -0.686 | 0.311 |
Z-score(水平段长) | 0.141 | -0.206 | 0.245 | 0.680 | 0.150 |
Z-score(单井储量) | 0.637 | 0.134 | 0.121 | 0.670 | 0.016 |
Z-score(脆性矿物含量) | -0.320 | 0.025 | -0.321 | -0.566 | -0.062 |
Z-score(最大排量) | -0.156 | 0.145 | 0.030 | 0.020 | 0.889 |
Z-score(最小排量) | 0.042 | -0.184 | -0.015 | -0.024 | 0.841 |
Z-score(井深) | -0.133 | 0.514 | 0.128 | 0.124 | 0.577 |
Table 5
PCA processed matrix of testing samples from shale gas wells"
井号 | 自变量X' | 因变量Y | |||||
---|---|---|---|---|---|---|---|
资源品质指标 | 产量指标 | 改造程度指标 | 储层质量指标 | 压裂施工指标 | 储量动用程度/% | ||
YS108H1-2 | 38 745.19 | 242 578.90 | 29 169.37 | -26 625.29 | 38 684.12 | 14.9 | |
YS108H1-4 | 31 815.66 | 200 651.80 | 32 300.94 | -21 119.02 | 31 753.22 | 34.2 | |
YS108H1-8 | 25 669.95 | 163 450.99 | 32 491.84 | -16 325.98 | 25 599.78 | 23.5 | |
YS108H2-2 | 25 977.16 | 166 748.52 | 33 369.81 | -16 560.60 | 25 913.70 | 18.0 | |
YS108H2-3 | 23 559.73 | 148 623.42 | 15 293.25 | -15 499.28 | 23 498.18 | 9.2 | |
YS108H2-4 | 45 494.63 | 283 912.81 | 34 990.12 | -31 269.70 | 45 425.26 | 24.7 | |
YS108H2-5 | 23 072.32 | 147 564.03 | 25 219.65 | -15 067.94 | 23 006.75 | 24.7 | |
YS108H3-2 | 46 243.02 | 288 485.75 | 31 464.01 | -32 137.25 | 46 174.13 | 22.9 | |
YS108H6-5 | 23 799.00 | 151 848.49 | 30 773.49 | -14 974.36 | 23 739.38 | 23.5 | |
YS108H8-5 | 5 442.66 | 40 631.93 | 29 577.75 | -909.97 | 5 380.57 | 12.8 | |
YS108H9-2 | 11 374.61 | 76 894.37 | 33 755.54 | -5 246.87 | 11 313.41 | 12.4 | |
YS108H9-3 | 11 123.02 | 76 088.64 | 41 027.27 | -4 541.59 | 11 062.52 | 20.8 | |
YS108H9-5 | 10 214.87 | 69 443.30 | 28 294.55 | -4 880.08 | 10 155.26 | 10.0 | |
YS108H11-1 | 26 495.12 | 167 691.19 | 22 035.12 | -17 699.01 | 26 425.29 | 27.9 | |
YS108H13-2 | 27 887.31 | 178 252.07 | 32 591.70 | -18 339.07 | 27 820.61 | 24.8 | |
YS108H13-3 | 33 636.45 | 213 393.80 | 34 506.93 | -22 589.42 | 33 570.31 | 29.4 | |
YS108H13-4 | 22 637.13 | 147 494.82 | 41 224.96 | -13 616.19 | 22 590.07 | 39.6 | |
YS108H19-2 | 17 589.50 | 115 829.81 | 38 711.51 | -9 716.63 | 17 549.24 | 12.0 | |
YS108H19-4 | 16 724.85 | 110 252.57 | 33 984.25 | -9 539.17 | 16 685.64 | 15.2 | |
YS108H19-6 | 19 808.92 | 127936.21 | 21 583.31 | -12 956.80 | 19 758.71 | 17.2 |
Table 6
Comparison of prediction results and calculation results of different methods"
井号 | 实际储量 动用程度/% | 预测值/% | 预测误差/% | |||||
---|---|---|---|---|---|---|---|---|
PCA-PLS联合法 | 神经网络法 | 多元线性回归法 | PCA-PLS法 | 神经网络法 | 多元线性回归法 | |||
YS108H1-2 | 14.9 | 14.0 | 24.0 | 18.7 | 0.9 | 9.1 | 3.8 | |
YS108H1-4 | 34.2 | 33.0 | 25.0 | 19.2 | 1.2 | 9.2 | 15.0 | |
YS108H1-8 | 23.5 | 22.8 | 21.9 | 19.0 | 0.7 | 1.6 | 4.5 | |
YS108H2-2 | 18.0 | 20.0 | 26.4 | 21.3 | 2.0 | 8.4 | 3.3 | |
YS108H2-3 | 9.2 | 11.0 | 4.7 | 18.7 | 1.8 | 4.5 | 9.5 | |
YS108H2-4 | 24.7 | 26.0 | 26.2 | 23.3 | 1.3 | 1.5 | 1.4 | |
YS108H2-5 | 24.7 | 24.1 | 23.8 | 17.9 | 0.6 | 0.9 | 6.8 | |
YS108H3-2 | 22.9 | 24.0 | 26.6 | 19.4 | 1.1 | 3.7 | 3.5 | |
YS108H6-5 | 23.5 | 22.1 | 17.3 | 18.2 | 1.4 | 6.2 | 5.3 | |
YS108H8-5 | 12.8 | 10.8 | 17.8 | 18.3 | 2.0 | 5.0 | 5.5 | |
YS108H9-2 | 12.4 | 11.0 | 14.0 | 20.4 | 1.4 | 1.6 | 8.0 | |
YS108H9-3 | 20.8 | 20.0 | 18.2 | 25.7 | 0.8 | 2.6 | 4.9 | |
YS108H9-5 | 10.0 | 12.0 | 15.6 | 18.4 | 2.0 | 5.6 | 8.4 | |
YS108H11-1 | 27.9 | 27.0 | 20.8 | 17.7 | 0.9 | 7.1 | 10.2 | |
YS108H13-2 | 24.8 | 21.8 | 26.6 | 23.4 | 3.0 | 1.8 | 1.4 | |
YS108H13-3 | 29.4 | 28.0 | 27.4 | 25.5 | 1.4 | 2.0 | 3.9 | |
YS108H13-4 | 39.6 | 41.2 | 26.3 | 31.4 | 1.6 | 13.3 | 8.2 | |
YS108H19-2 | 12.0 | 13.5 | 18.5 | 24.5 | 1.5 | 6.5 | 12.5 | |
YS108H19-4 | 15.2 | 12.8 | 20.4 | 21.5 | 2.4 | 5.2 | 6.3 | |
YS108H19-6 | 17.2 | 18.0 | 18.6 | 17.6 | 0.8 | 1.4 | 0.4 | |
平均值 | 1.44 | 4.86 | 6.13 |
[1] |
马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563.
doi: 10.11698/PED.2020.03.11 |
MA Xinhua, LI Xizhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563.
doi: 10.11698/PED.2020.03.11 |
|
[2] | 车世琦. 涪陵气田平桥区块页岩气选区评价[J]. 石油地质与工程, 2022, 36(4): 48-54. |
CHE Shiqi. Selection evaluation of shale gas in Pingqiao block of Fuling gas field[J]. Petroleum Geology & Engineering, 2022, 36(4): 48-54. | |
[3] | 张雪峰, 徐最, 康弘男, 等. 达坂城次凹二叠系页岩气地质特征与勘探潜力[J]. 石油地质与工程, 2022, 36(5): 46-51. |
ZHANG Xuefeng, XU Zui, KANG Hongnan, et al. Geological characteristics and exploration potential of Permian shale gas in Dabancheng sub-sag[J]. Petroleum Geology & Engineering, 2022, 36(5): 46-51. | |
[4] | 王沛, 欧阳传湘, 陈宏生, 等. 应用PCA和多元非线性回归快速预测储层敏感性[J]. 断块油气田, 2018, 25(2): 232-235. |
WANG Pei, OUYANG Chuanxiang, CHEN Hongsheng, et al. Application of PCA and multiple nonlinear regression to rapid prediction of reservoir sensitivity[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 232-235. | |
[5] | 祁鹏. 基于偏最小二乘的高炉铁水硅含量预测研究[D]. 包头: 内蒙古科技大学, 2010. |
QI Peng. Partial least squares prediction of silicon content in blast furnace[D]. Baotou: Inner Mongolia University of Science & Technology, 2010. | |
[6] | 吕娜. 雪衣藻响应和适应环境胁迫分子调节的多组学研究[D]. 广州: 华南理工大学, 2014. |
LYU Na. Molecular regulation of snow alga Chlamydomonas nivalis in response to stress conditions using multi-omics study[D]. Guangzhou: South China University of Technology, 2014. | |
[7] | 卢丽, 丁博, 刘青, 等. 多元素含量结合化学计量学技术在鳕鱼物种鉴别和产地溯源中的应用[J]. 食品安全质量检测学报, 2021, 12(24): 9436-9444. |
LU Li, DING Bo, LIU Qing, et al. Application of multi-elements content analysis combined with chemometrics in species identification and origin tracing of cods[J]. Journal of Food Safety and Quality, 2021, 12(24): 9436-9444. | |
[8] | 李霜. 基于代谢组学的数据标准化方法的综合评价[D]. 重庆: 重庆大学, 2018. |
LI Shuang. The comprehensive assessment of normalization methods in MS-based metalomics data[D]. Chongqing: Chongqing University, 2018. | |
[9] | 李君岩. 偏最小二乘回归在油田固井质量预测中的应用研究[D]. 大庆: 东北石油大学, 2014. |
LI Jungang. Application of partial least squares regression in oilfield cementing quality prediction[D]. Daqing: Northeast Petroleum University, 2014. | |
[10] | 柯朝甫, 张涛, 武晓岩, 等. 代谢组学数据分析的统计学方法[J]. 中国卫生统计, 2014, 31(2): 357-359. |
KE Chaopu, ZHANG Tao, WU Xiaoyan, et al. Statistical methods for Metabolomics data analysis[J]. Chinese Journal of Health Statistics, 2014, 31(2): 357-359. | |
[11] |
郝天轩, 柳猛. 基于多元非线性回归理论的煤层瓦斯含量预测[J]. 煤炭技术, 2014, 33(9): 1-3.
doi: 10.1016/0257-8972(87)90172-1 |
HAO Tianxuan, LIU Meng. Prediction of coal seam gas content based on multivariate nonlinear regression[J]. Coal Technology, 2014, 33(9): 1-3.
doi: 10.1016/0257-8972(87)90172-1 |
|
[12] | 王昕旭. 偏最小二乘回归在孔隙度预测中的应用[J]. 地球物理学进展, 2015, 30(6): 2807-2813. |
WANG Xinxu. Partial least-squares regression for the application in porosity prediction[J]. Progress in Geophysics. 2015, 30(6): 2807-2813. | |
[13] |
冯明刚, 严伟, 朱林奇, 等. 基于Boosting-PLS回归的页岩总含气量预测方法[J]. 煤炭技术, 2018, 37(10): 23-25.
doi: 10.1016/0257-8972(89)90118-7 |
FENG Minggang, YAN Wei, ZHU Linqi, et al. Method to predict total gas content in shale reservoir combing boosting-PLS algorithm and conventional logging data[J]. Coal Technology, 2018, 37(10): 23-25.
doi: 10.1016/0257-8972(89)90118-7 |
|
[14] | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
[15] | 郑爱维, 梁榜, 舒志国, 等. 基于大数据PLS法的页岩气产能影响因素分析——以四川盆地涪陵气田焦石坝区块为例[J]. 天然气地球科学, 2020, 31(4): 542-551. |
ZHENG Aiwei, LIANG Bang, SHU Zhiguo, et al. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 542-551. | |
[16] | 徐轩, 朱华银, 徐婷, 等. 多层合采气藏分层储量动用特征及判定方法[J]. 特种油气藏, 2015, 22(1): 111-114. |
XU Xuan, ZHU Huayin, XU Ting, et al. Separated reserve producing characteristic and determination in multi-layer commingled producing gas reservoir[J]. Special Oil and Gas Reservoirs, 2015, 22(1): 111-114. | |
[17] | 朱桂良, 孙建芳, 刘中春. 塔河油田缝洞型油藏气驱动用储量计算方法[J]. 石油与天然气地质, 2019, 40(2): 436-442. |
ZHU Guiliang, SUN Jianfang, LIU Zhongchun. An approach to calculate developed reserves in gas drive fractured-vuggy reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2019, 40(2): 436-442. | |
[18] | 张歧, 吕华, 徐运动, 等. 含水饱和度对低渗砂岩气藏储量动用的影响[J]. 西部探矿工程, 2012, 24(4): 85-87. |
ZHANG Qi, LYU Hua, XU Yundong, et al. Influence of water saturation on reserve production of low permeability sandstone gas reservoir[J]. West-China Exploration Engineering, 2012, 24(4): 85-87. | |
[19] |
贾爱林, 王国亭, 孟德伟, 等. 大型低渗-致密气田井网加密提高采收率对策——以鄂尔多斯盆地苏里格气田为例[J]. 石油学报, 2018, 39(7): 802-813.
doi: 10.7623/syxb201807007 |
JIA Ailin, WANG Guoting, MENG Dewei, et al. Well pattern infilling strategy to enhance oil recovery of giant low-permeability tight gas field: A case study of Sulige gas field, Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(7): 802-813.
doi: 10.7623/syxb201807007 |
|
[20] | 胡罡, 刘维霞. 利用储量动用质量评价储量动用状况的新方法[J]. 石油天然气学报, 2011, 33(9): 60-63. |
HU Gang, LIU Weixia. A new method of evaluating reserves producing status by using reserves producing quality[J]. Journal of Oil and Gas Technology, 2011, 33(9): 60-63. | |
[21] | 胡罡. 储量动用状况定量化表征研究[J]. 成都理工大学学报(自然科学版), 2012, 39(1): 100-103. |
HU Gang. Research on quantitative characterization of evaluating reserves employing status[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(1): 100-103. | |
[22] | 刘亚龙, 王海燕, 王飞. 太阳大寨区块浅层页岩气水平井优快钻井技术研究[J]. 石油和化工设备, 2021, 24(6): 146-148. |
LIU Yalong, WANG Haiyan, WANG Fei. Study on optimal and fast drilling technology for shallow horizontal shale gas well in Taiyang Block[J]. Petro & Chemical Equipment, 2021, 24(6): 146-148. | |
[23] | 梁兴, 单长安, 张朝, 等. 昭通太阳背斜山地浅层页岩气“三维封存体系”富集成藏模式[J]. 地质学报, 2021, 95(11): 3380-3399. |
LIANG Xing, SHAN Changan, ZHANG Zhao, et al. “Three-dimensional closed system” accumulation model of Taiyang anticline mountain shallow shale gas in the Zhaotong demonstration area[J]. Acta Geologica Sinica, 2021, 95(11): 3380-3399. | |
[24] |
梁兴, 徐政语, 张介辉, 等. 浅层页岩气高效勘探开发关键技术——以昭通国家级页岩气示范区太阳背斜区为例[J]. 石油学报, 2020, 41(9): 1033-1048.
doi: 10.7623/syxb202009001 |
LIANG Xing, XU Zhengyu, ZHANG Jiehui, et al. Key efficient exploration and development technoloiges of shallow shale gas: A case study of Taiyang anticline area of Zhaotong National Shale Gas Demonstration Zone[J]. Acta Petrolei Sinica, 2020, 41(9): 1033-1048.
doi: 10.7623/syxb202009001 |
|
[25] | 梁兴, 张朝, 单长安, 等. 山地浅层页岩气勘探挑战、对策与前景——以昭通国家级页岩气示范区为例[J]. 天然气工业, 2021, 41(2): 27-36. |
LIANG Xing, ZHANG Zhao, SHAN Changan, et al. Exploration challenges, countermeasures and prospect of mountain shallow shale gas: A cased study on the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(2): 27-36. |
[1] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[2] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[3] | GAO Quanfang,ZHANG Peixian,GUAN Linlin,LI Yanjing,NI Feng. Influence of lower-level reverse faults on shale gas enrichment and high yield: A case study of Pingqiao Dong-1 Fault in Nanchuan area, southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 458-467. |
[4] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[5] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[6] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[7] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[8] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[9] | LOU Zhanghua, ZHANG Xinke, WU Yuchen, GAO Yuqiao, ZHANG Peixian, JIN Aimin, ZHU Rong. Fluid response characteristics of shale gas preservation differences in Nanchuan and its adjacent blocks in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 451-458. |
[10] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[11] | LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. |
[12] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[13] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[14] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
[15] | ZHANG Longsheng,WANG Weiheng. Study and application of a high temperature foaming agent in anionic-nonionic system namely HDHP: A case study of shale gas wells in Dongsheng Block, Sichuan Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 240-246. |
|