Reservoir Evaluation and Development ›› 2020, Vol. 10 ›› Issue (5): 108-113.doi: 10.13809/j.cnki.cn32-1825/te.2020.05.016
• Comprehensive Research • Previous Articles Next Articles
Received:
2019-05-01
Online:
2020-09-24
Published:
2020-10-26
CLC Number:
Shanyi ZHANG,Jinyu LAN. Research on fracturing layer combination method based on mutation series method[J]. Reservoir Evaluation and Development, 2020, 10(5): 108-113.
Table 2
Evaluation of reservoir parameters"
层号 | 储层参数 | 无量纲化处理 | 归一化值 | 中间突变指标值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
砂岩 厚度/ m | 有效 厚度/ m | 砂地 比/ % | 砂岩 厚度 | 有效 厚度 | 砂地 比 | 砂岩 厚度 | 有效 厚度 | 砂地 比 | ||||
S34 | 0.4 | 0 | 0.3 | 0.12 | 0 | 0.46 | 0.49 | 0 | 0.68 | 0.39 | ||
S35b | 0.2 | 0 | 0.1 | 0 | 0 | 0.07 | 0 | 0 | 0.26 | 0.09 | ||
S35c | 0.8 | 0 | 0.4 | 0.35 | 0 | 0.73 | 0.71 | 0 | 0.85 | 0.52 | ||
S36 | 0.3 | 0 | 0.1 | 0.06 | 0 | 0.12 | 0.39 | 0 | 0.35 | 0.25 | ||
S37c | 0.8 | 0 | 0.3 | 0.35 | 0 | 0.50 | 0.71 | 0 | 0.70 | 0.47 | ||
P111a | 1.6 | 0.5 | 0.5 | 0.82 | 0.63 | 0.96 | 0.94 | 0.89 | 0.98 | 0.94 | ||
P132 | 1.3 | 0.4 | 0.2 | 0.65 | 0.50 | 0.38 | 0.80 | 0.79 | 0.78 | 0.79 | ||
P133a | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
P133b | 0.4 | 0 | 0.1 | 0.12 | 0 | 0.08 | 0.34 | 0 | 0.44 | 0.26 | ||
P141 | 0.9 | 0 | 0.3 | 0.41 | 0 | 0.57 | 0.74 | 0 | 0.75 | 0.50 | ||
P142a | 0.6 | 0 | 0.2 | 0.24 | 0 | 0.40 | 0.62 | 0 | 0.80 | 0.47 | ||
P142b | 1.9 | 0.8 | 0.4 | 1.00 | 1.00 | 0.79 | 1.00 | 1.00 | 0.93 | 0.98 | ||
P15 | 0.7 | 0 | 0.1 | 0.29 | 0 | 0.11 | 0.54 | 0 | 0.49 | 0.34 |
Table 3
Evaluation of capacity parameters"
层号 | 产能参数 | 无量纲化处理 | 归一化值 | 中间突变 指标值 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
含水率/ % | 地层压力/ MPa | 采出 程度/% | 产液强度/ [t·(d·m)-1] | 含水率 | 地层 压力 | 采出 程度 | 产液 强度 | 含水率 | 地层 压力 | 采出 程度 | 产液 强度 | ||||
S34 | 88.00 | 5.00 | 0.36 | 1.00 | 0.70 | 0.44 | 0.66 | 0.92 | 0.89 | 0.85 | 0.90 | 0.96 | 0.90 | ||
S35b | 88.90 | 5.00 | 0.37 | 0 | 0.64 | 0.44 | 0.60 | 1.00 | 0.86 | 0.85 | 0.88 | 1.00 | 0.90 | ||
S35c | 94.90 | 4.97 | 0.45 | 3.00 | 0.22 | 0.42 | 0.28 | 0.77 | 0.74 | 0.75 | 0.73 | 0.88 | 0.77 | ||
S36 | 98.00 | 5.02 | 0.50 | 1.00 | 0 | 0.45 | 0.05 | 0.92 | 0 | 0.77 | 0.48 | 0.96 | 0.55 | ||
S37c | 85.80 | 4.75 | 0.33 | 2.50 | 0.86 | 0.30 | 0.80 | 0.81 | 0.93 | 0.79 | 0.94 | 0.93 | 0.90 | ||
P111a | 94.70 | 4.54 | 0.46 | 6.20 | 0.23 | 0.18 | 0.22 | 0.53 | 0.61 | 0.71 | 0.68 | 0.73 | 0.68 | ||
P132 | 91.80 | 4.21 | 0.34 | 4.20 | 0.44 | 0 | 0.74 | 0.68 | 0.81 | 0 | 0.86 | 0.88 | 0.64 | ||
P133a | 84.60 | 4.73 | 0.28 | 0 | 0.94 | 0.29 | 0.99 | 1.00 | 0.99 | 0.78 | 1.00 | 1.00 | 0.94 | ||
P133b | 83.80 | 5.20 | 0.32 | 1.00 | 1.00 | 0.55 | 0.83 | 0.92 | 1.00 | 0.86 | 0.96 | 0.97 | 0.95 | ||
P141 | 88.40 | 5.05 | 0.37 | 3.50 | 0.68 | 0.47 | 0.60 | 0.74 | 0.88 | 0.86 | 0.88 | 0.86 | 0.87 | ||
P142a | 87.70 | 5.12 | 0.36 | 0.50 | 0.73 | 0.51 | 0.66 | 0.96 | 0.90 | 0.87 | 0.90 | 0.98 | 0.91 | ||
P142b | 93.20 | 5.10 | 0.31 | 6.88 | 0.34 | 0.50 | 0.85 | 0.48 | 0.80 | 0.79 | 0.92 | 0.83 | 0.84 | ||
P15 | 84.00 | 5.46 | 0.28 | 1.00 | 0.99 | 0.70 | 1.00 | 0.92 | 1.00 | 0.93 | 1.00 | 0.98 | 0.98 |
Table 4
Evaluation of oily parameters"
层号 | 含油性参数 | 无量纲化处理 | 归一化值 | 中间 突变 指标值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
剩余可采 储量/104 t | 含油饱和度/ % | 剩余油地质 储量/104 t | 剩余可采 储量 | 含油 饱和度 | 剩余油 地质储量 | 剩余可采 储量 | 含油 饱和度 | 剩余油 地质储量 | ||||
S34 | 23.39 | 0.37 | 107.48 | 0.14 | 0.44 | 0.03 | 0.51 | 0.66 | 0.42 | 0.53 | ||
S35b | 19.83 | 0.37 | 90.40 | 0.11 | 0.44 | 0.01 | 0.48 | 0.66 | 0.33 | 0.49 | ||
S35c | 18.73 | 0.37 | 145.74 | 0.10 | 0.44 | 0.08 | 0.47 | 0.66 | 0.53 | 0.55 | ||
S36 | 3.56 | 0.37 | 83.32 | 0 | 0.44 | 0 | 0 | 0.66 | 0.16 | 0.27 | ||
S37c | 50.82 | 0.37 | 177.84 | 0.32 | 0.44 | 0.12 | 0.69 | 0.66 | 0.58 | 0.64 | ||
P111a | 50.94 | 0.37 | 487.85 | 0.32 | 0.44 | 0.48 | 0.75 | 0.76 | 0.69 | 0.74 | ||
P132 | 64.53 | 0.37 | 442.88 | 0.42 | 0.47 | 0.43 | 0.80 | 0.68 | 0.75 | 0.75 | ||
P133a | 23.63 | 0.37 | 80.08 | 0.14 | 0.44 | 0 | 0.52 | 0.66 | 0 | 0.39 | ||
P133b | 150.18 | 0.37 | 471.16 | 1.00 | 0.44 | 0.46 | 1.00 | 0.81 | 0.77 | 0.86 | ||
P141 | 53.21 | 0.37 | 214.73 | 0.34 | 0.44 | 0.16 | 0.70 | 0.66 | 0.63 | 0.66 | ||
P142a | 46.37 | 0.37 | 186.20 | 0.29 | 0.44 | 0.13 | 0.66 | 0.66 | 0.60 | 0.64 | ||
P142b | 96.98 | 0.41 | 924.38 | 0.64 | 1.00 | 1.00 | 0.89 | 1.00 | 1.00 | 0.96 | ||
P15 | 77.62 | 0.37 | 225.80 | 0.51 | 0.44 | 0.17 | 0.71 | 0.76 | 0.64 | 0.70 |
Table 5
Evaluation comprehensive index"
层号 | 中间突变指标值 | 中间变量突变级数值 | 综合 评价值 | 隔层 厚度 | 优化 组合层段 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
储层发育 | 产能指标 | 含油指标 | 物性指标 | 储层发育 | 产能指标 | 含油指标 | 物性指标 | |||||
S34 | 0.29 | 0.90 | 0.53 | 0 | 0.73 | 0.95 | 0.81 | 0 | 0.62 | 1.1 | ① | |
S35b | 0.07 | 0.90 | 0.49 | 0 | 0.51 | 0.95 | 0.79 | 0 | 0.56 | 2.5 | ① | |
S35c | 0.39 | 0.77 | 0.55 | 0 | 0.79 | 0.88 | 0.82 | 0 | 0.62 | 1.7 | ① | |
S36 | 0.19 | 0.55 | 0.27 | 0 | 0.66 | 0.74 | 0.65 | 0 | 0.51 | 2.5 | ② | |
S37c | 0.35 | 0.90 | 0.64 | 0 | 0.77 | 0.95 | 0.86 | 0 | 0.65 | 3.5 | ③ | |
P111a | 0.70 | 0.68 | 0.74 | 0.76 | 0.92 | 0.93 | 0.90 | 0.87 | 0.90 | 1.7 | ④ | |
P132 | 0.60 | 0.64 | 0.75 | 0.75 | 0.90 | 0.89 | 0.91 | 0.86 | 0.89 | 4.0 | ⑤ | |
P133a | 0 | 0.94 | 0.39 | 0 | 0 | 0.97 | 0.73 | 0 | 0.43 | 2.8 | ⑥ | |
P133b | 0.19 | 0.95 | 0.86 | 0 | 0.66 | 0.97 | 0.95 | 0 | 0.65 | 3.9 | ⑥ | |
P141 | 0.37 | 0.87 | 0.66 | 0 | 0.78 | 0.93 | 0.87 | 0 | 0.65 | 1.0 | ⑦ | |
P142a | 0.35 | 0.91 | 0.64 | 0 | 0.77 | 0.96 | 0.86 | 0 | 0.65 | 0.7 | ⑦ | |
P142b | 0.73 | 0.84 | 0.96 | 0.76 | 0.94 | 0.94 | 0.98 | 0.93 | 0.95 | 5.7 | ⑦ | |
P15 | 0.26 | 0.98 | 0.70 | 0 | 0.71 | 0.99 | 0.89 | 0 | 0.65 | 3.4 | ⑧ |
Table 6
Comparison of fracturing effects of oil wells in the same period"
时间 | 砂岩厚度/ m | 有效厚度/ m | 措施前 日产油/t | 措施前 含水率/% | 措施后 日产油/t | 措施后 含水率/% | 压裂前后 日产油量差值/t | 压裂前后 含水率差值/% |
---|---|---|---|---|---|---|---|---|
2018年下半年使用该方法 | 13.1 | 5.0 | 1.4 | 89.0 | 5.3 | 85.6 | 3.9 | -3.5 |
2017年下半年未使用该方法 | 13.5 | 5.2 | 1.6 | 87.0 | 5.0 | 86.4 | 3.4 | -0.7 |
差值 | -0.4 | -0.2 | -0.2 | 2.0 | 0.3 | -0.8 | 0.5 | -2.8 |
[1] | 薛颖. 基于油层分类标准的特低渗油藏压裂井层定量优选研究及应用[J]. 新疆石油天然气, 2019,15(3):58-63. |
XUE Y. A quantitative optimization research based on the classification criteria[J]. Xinjiang Oil &Gas, 2019,15(3):58-63. | |
[2] | 高辉, 张晓, 何梦卿, 等. 基于测井数据体的页岩油储层可压裂性评价研究[J]. 地球物理学进展, 2018,33(2):603-612. |
GAO H, ZHANG X, HE M Q, et al. Study on evaluation of shale oil reservoir fracability based on well logging data volume[J]. Progress in Geophysics, 2018,33(2):603-612. | |
[3] | 张文, 王禄春, 郭玮琪, 等. 特高含水期水驱油井压裂潜力研究[J]. 岩性油气藏, 2012,24(4):115-120. |
ZHANG W, WANG L C, GUO W Q, et al. Study on fracturing potential of water driving oil wells in extra-high water cut stage[J]. Lithologic Reservoirs, 2012,24(4):115-120. | |
[4] | HU Y, HAN L G, ZHANG P , et al. Multi-step full waveform inversion based on waveform mode decomposition[C]// paper SEG-2016-13712251 presented at the 2016 SEG International Exposition and Annual Meeting, 16-21 October 2016, Dallas, Texas, USA. |
[5] | KLINGENSMITH B C, HOSSAINI M, FLEENOR S. Considering far-field fracture connectivity in stimulation treatment designs in the Permian Basin[C]// paper URTEC-2153821-MS presented at the Unconventional Resources Technology Conference, 20-22 July 2015, San Antonio, Texas, USA. |
[6] | SAHAI R, MISKIMINS J L, OLSON K E, et al. Laboratory results of proppant transport in complex fracture systems[C]// paper SPE-168579-MS presented at the SPE Hydraulic Fracturing Technology Conference, 4-6 February 2014, The Woodlands, Texas, USA. |
[7] | 翟文宝, 李军, 周英操, 等. 突变理论在页岩储层可压性评价中的应用[J]. 断块油气田, 2018,25(1):76-79. |
ZHAI W B, LI J, ZHOU Y C, et al. Application of catastrophe theory to fracability evaluation of shale reservoir[J]. Fault-Block Oil & Gas Field, 2018,25(1):76-79. | |
[8] | 牛世忠. 红岗油田压裂选井选层方法研究及应用[J]. 石油天然气学报(江汉石油学院学报), 2005,27(6):916-918. |
NIU S Z. Method and its application of well selection for fracturing in Honggang Oilfield[J]. Journal of Oil and Gas Technology, 2005,27(6):916-918. | |
[9] | 梁煌, 韩立国, 许卓, 等. 互相关与最小二乘加权目标函数全波形反演[J]. 世界地质, 2017,36(2):588-594. |
LIANG H, HAN L G, XU Z, et al. Full waveform inversion based on weighted cross-correlation and least squares objective function[J]. Global Geology, 2017,36(2):588-594. | |
[10] | 王勃, 孙粉锦, 李贵中, 等. 基于模糊物元的煤层气高产富集区预测——以沁水盆地为例[J]. 天然气工业, 2010,30(11):22-25. |
WANG B, SUN F J, LI G Z, et al. Prediction of prolific CBM zones with the fuzzy matter clement method: A case study of the Qinshui Basin[J]. Natural Gas lndustry, 2010,30(11):22-25. | |
[11] | 张善义, 兰金玉. 基于灰色关联分析的沉积微相定量描述技术及应用[J]. 断块油气田, 2019,26(1):25-28. |
ZHANG S Y, LAN J Y. Quantitative description technique of sedimentary micro-facies by grey relational analysis and its application[J]. Fault-Block Oil & Gas Field, 2019,26(1):25-28. | |
[12] | 张善义, 兰金玉, 李冰. 基于粒子群算法的综合调整方案优化方法[J]. 特种油气藏, 2019,26(1):126-130. |
ZHANG S Y, LAN J Y, LI B. Comprehensive optimization of adjustment program based on particle swarm optimization[J]. Special Oil and Gas Reservoirs, 2019,26(1):126-130. | |
[13] | 雷能忠. 基于RBF神经网络的煤储层随机建模[J]. 煤炭学报, 2012,37(7):1144-1149. |
LEI N Z. Stochastic simulation of coalbed methane reservoir by radial basis function neural network[J]. Journal of China Coal Society, 2012,37(7):1144-1149. | |
[14] | 郑鸿明, 彭立, 李生杰. 模拟退火静校正[J]. 新疆石油地质, 2001,22(1):32-34. |
ZHENG H M, PENG L, LI S J. Conducting static correction by annealing analog[J]. Xinjiang Petroleum Geology, 2001,22(1):32-34. | |
[15] | 梁昌勇, 柏桦, 蔡美菊, 等. 量子遗传算法研究进展[J]. 计算机应用研究, 2012,29(7):2401-2405. |
LIANG C Y, BAI H, CAI M J, et al. Advances in quantum genetic algorithm[J]. Application Research of Computers, 2012,29(7):2401-2405. | |
[16] |
张强, 李盼池, 刘丽杰. 基于量子混合蛙跳算法的油田开发规划多目标优化[J]. 信息与控制, 2014,43(1):116-122.
doi: 10.3724/SP.J.1219.2014.00116 |
ZHANG Q, LI P C, LIU L J. Multi-objective optimization of oilfield development plan based on uantum-shuffled frog-leaping algorithm[J]. Information and Control, 2014,43(1):116-122.
doi: 10.3724/SP.J.1219.2014.00116 |
|
[17] | 白云飞, 叶振华. 基于突变优选理论的采矿方法选择[J]. 金属矿山, 2011,40(10):61-67. |
BAI Y F, YE Z H. Selection of mining method based on the mutation optimization theory[J]. Metal Mine, 2011,40(10):61-67. | |
[18] |
师俊峰, 刘玉章, 吴晓东, 等. 基于突变理论的油气井出砂预测新方法[J]. 西南石油大学学报(自然科学版), 2010,32(2):128-132.
doi: 10.3863/j.issn.1674-5086.2010.02.025 |
SHI J F, LIU Y Z, WU X D, et al. A new probe of sand production prediction based on catastrophic theory[J]. Joumal of Souihwest Petrpleum University(Science &Technology Edition), 2010,32(2):128-132.
doi: 10.3863/j.issn.1674-5086.2010.02.025 |
|
[19] | 凌复华. 突变理论应用及其应用[M]. 上海: 上海交通大学出版社, 1987. |
LING F H. The theory and application of catastrophe theory[M]. Shanghai: Shanghai Jiao Tong University Press, 1987. | |
[20] | 戴勇, 李正文, 吴大奎. 突变论在地震资料储层预测中的应用[J]. 天然气工业, 2006,26(6):47-49. |
DAI Y, LI Z W, WU D K. Application of catastrophic theory to seismic reservoir prediction[J]. Natural Gas Industry, 2006,26(6):47-49. | |
[21] |
何沙, 吉安民, 杨品, 等. 安全流变—突变模型在井喷事故中的应用分析巨[J]. 天然气工业, 2011,31(4):109-112.
doi: 10.3787/j.issn.1000-0976.2011.04.025 |
HE S, JI A M, YANG P, et al. Application of safety rheology-mutation models in well blowout accidents[J]. Natural Gas Industry, 2011,31(4):109-112.
doi: 10.3787/j.issn.1000-0976.2011.04.025 |
|
[22] | 李绍飞, 孙书洪, 王向余. 突变理论在海河流域地下水环境风险评价中的应用[J]. 水利学报, 2007,38(11):1312-1317. |
LI S F, SUN S H, WANG X Y. Application of catastrophe theory to risk assessment of groundwater environment for river basin[J]. Journal of Hydraulic Engineering, 2007,38(11):1312-1317. |
[1] | XU Ning, CHEN Zhewei, XU Wanchen, WANG Ling, CUI Xiaolei, JIANG Meizhong, ZHAN Changwu. Prediction and evaluation method for development effect of shale oil storage volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748. |
[2] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[3] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[4] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[5] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[6] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[7] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[8] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[9] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[10] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[11] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
[12] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[13] | ZHANG Jiawei, LIU Xiangjun, XIONG Jian, LIANG Lixi, REN Jianfei, LIU Baiqu. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667. |
[14] | CUI Chuanzhi, LI Huailiang, WU Zhongwei, ZHANG Chuanbao, LI Hongbo, ZHANG Yinghua, ZHENG Wenkuan. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. |
[15] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
|