Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (4): 519-528.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.001
• Specilalist Forum • Previous Articles Next Articles
HU Wenge1,2(),MA Longjie1,2(
),WANG Yan1,2,BAO Dian1,2,ZHANG Yun1,2
Received:
2024-05-05
Online:
2024-09-10
Published:
2024-08-26
CLC Number:
Wenge HU,Longjie MA,Yan WANG, et al. Application and reflections on efficient development of deep oil and gas reservoirs in Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 519-528.
[1] | 中国国家标准化管理委员会. 石油天然气钻进工程术语: GB/T 28911—2012[S]. 北京: 中国标准出版社, 2012. |
Standardization Administration of the People’s Republic of China. Vocabulary of drilling engineering for the petroleum and natural gas: GB/T 28911—2012[S]. Beijing: China Standard Publishing House, 2012. | |
[2] | 张运东, 方辉, 刘帅奇, 等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石油工业, 2023, 30(6): 12-20. |
ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Process and development direction of deep oil and gas exploration and development[J]. World Petroleum Industry, 2023, 30(6): 12-20. | |
[3] | 白国平, 曹斌风. 全球深层油气藏及其分布规律[J]. 石油与天然气地质, 2014, 35(1): 19-25. |
BAI Guoping, CAO Binfeng. Characteristics and distribution patterns of deep petroleum accumulations in the world[J]. Oil & Gas Geology, 2014, 35(1): 19-25. | |
[4] | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672. |
MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China:Advances,technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672. | |
[5] | 杨宪彰, 能源, 徐振平, 等. 塔里木盆地三大构造旋回油气成藏特征[J]. 现代地质, 2024, 38(2): 287-299. |
YANG Xianzhang, NENG Yuan, XU Zhenping, et al. Characteristics of hydrocarbon accumulation by processes of the three structural cyclones in Tarim Basin[J]. Geoscience, 2024, 38(2): 287-299. | |
[6] |
赵文智, 汪泽成, 黄福喜, 等. 中国陆上叠合盆地超深层油气成藏条件与勘探地位[J]. 石油学报, 2023, 44(12): 2020-2032.
doi: 10.7623/syxb202312002 |
ZHAO Wenzhi, WANG Zecheng, HUANG Fuxi, et al. Hydrocarbon accumulation conditions and exploration position of ultra-deep reservoirs in onshore superimposed basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2020-2032.
doi: 10.7623/syxb202312002 |
|
[7] | 朱光有, 姜华, 黄士鹏, 等. 中国海相油气成藏理论新进展与超大型油气区预测[J/OL]. 石油学报, 2023, 1-25[2024-03-15]. http://kns.cnki.net/kcms/detail/11.2128.TE.20230625.1736.002.html. |
ZHU Guangyou, JIANG Hua, HUANG Shipeng, et al. New progress of marine hydrocarbon accumulation theory and prediction of super large oil and gas areas in China[J/OL]. Acta Petrolei Sinica, 2023, 1-25[2024-03-15]. http://kns.cnki.net/kcms/detail/11.2128.TE.20230625.1736.002.html. | |
[8] | 马安来, 金之钧, 刘金钟. 塔里木盆地寒武系深层油气赋存相态研究[J]. 石油实验地质, 2015, 37(6): 681-688. |
MA Anlai, JIN Zhijun, LIU Jinzhong. Hydrocarbon phase in the deep Cambrian of the Tarim Basin[J]. Petroleum Geology & Experiment, 2015, 37(6): 681-688. | |
[9] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
doi: 10.3969/j.issn.1672-7703.2020.01.010 |
QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
doi: 10.3969/j.issn.1672-7703.2020.01.010 |
|
[10] |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
|
[11] | 郭旭升, 马玲. 中国石化向深地进军[N]. 中国石化报, 2022-11-14. |
GUO Xusheng, MA Ling. Sinopec entered the deep land[N]. China Petrochemical News, 2022-11-14. | |
[12] |
何治亮, 陆建林, 林娟华, 等. 中国海相盆地原型-改造分析与油气有序聚集模式[J]. 地学前缘, 2022, 29(6): 60-72.
doi: 10.13745/j.esf.sf.2022.8.4 |
HE Zhiliang, LU Jianlin, LIN Juanhua, et al. Marine basins in China: A prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns[J]. Earth Science Frontiers, 2022, 29(6): 60-72.
doi: 10.13745/j.esf.sf.2022.8.4 |
|
[13] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
doi: 10.11698/PED.2022.01.01 |
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17.
doi: 10.11698/PED.2022.01.01 |
|
[14] | 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6): 54-65. |
ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54-65. | |
[15] |
闫磊, 朱光有, 王珊, 等. 塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选[J]. 石油学报, 2021, 42(11): 1446-1457.
doi: 10.7623/syxb202111004 |
YAN Lei, ZHU Guangyou, WANG Shan, et al. Accumulation conditions and favorable areas for natural gas accumulation in the 10000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1446-1457.
doi: 10.7623/syxb202111004 |
|
[16] | 李慧莉, 刘士林, 杨圣彬, 等. 塔中-巴麦地区构造沉积演化及其对奥陶系储层的控制[J]. 石油与天然气地质, 2014, 35(6): 883-892. |
LI Huili, LIU Shilin, YANG Shengbin, et al. Tectonic-sedimentary evolution of Tazhong-Bachu-Maigaiti area and its control on the Ordovician reservoir[J]. Oil & Gas Geology, 2014, 35(6): 883-892. | |
[17] | 曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. |
CAO Zicheng, LU Qinghua, GU Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984. | |
[18] | 陈思禹, 王颖晋, 郭俊阳, 等. 塔中东部碳酸盐岩储集层特征对比及勘探开发有利区预测[J]. 东北石油大学学报, 2021, 45(2): 10-19. |
CHEN Siyu, WANG Yingjin, GUO Junyang, et al. Comparison of carbonate reservoir characteristics in Eastern Tazhong Block of Tarim Basin and prediction of favorable development zone[J]. Journal of Northeast Petroleum University, 2021, 45(2): 10-19. | |
[19] | 胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发, 2020, 10(2): 1-10. |
HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. | |
[20] | 胡文革. 顺北油气田断溶体油藏油井产能评价新方法[J]. 新疆石油地质, 2021, 42(2): 168-172. |
HU Wenge. A new method for evaluating the productivity of oil wells in fault-karst reservoirs in Shunbei oil & gas field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 168-172. | |
[21] | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355. | |
[22] |
云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.
doi: 10.3969/j.issn.1672-7703.2021.03.004 |
YUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance,Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52.
doi: 10.3969/j.issn.1672-7703.2021.03.004 |
|
[23] | 胡文革. 塔里木盆地顺北地区不同断裂带油气充注能力表征研究与实践[J]. 石油与天然气地质, 2022, 43(3): 528-541. |
HU Wenge. Study and practice of characterizing hydrocarbon charging capacity of different fault zones, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(3): 528-541. | |
[24] | 付晓飞, 冯军, 王海学, 等. 走滑断裂“分期-异向”变形过程砂箱物理模拟:以塔里木盆地顺北5号断层北段为例[J]. 地球科学, 2023, 48(6): 2104-2116. |
FU Xiaofei, FENG Jun, WANG Haixue, et al. Sandbox physical simulation on “different period-different direction”deformation process of strike-slip faults: A case study of northern segment of Shunbei No. 5 fault in Tarim Basin[J]. Earth Science, 2023, 48(6): 2104-2116. | |
[25] |
张煜, 毛庆言, 李海英, 等. 顺北中部超深层断控缝洞型油气藏储集体特征与实践应用[J]. 中国石油勘探, 2023, 28(1): 1-13.
doi: 10.3969/j.issn.1672-7703.2023.01.001 |
ZHANG Yu, MAO Qingyan, LI Haiying, et al. Characteristics and practical application of ultra-deep fault-controlled fractured-cavity type reservoir in central Shunbei area[J]. China Petroleum Exploration, 2023, 28(1): 1-13.
doi: 10.3969/j.issn.1672-7703.2023.01.001 |
|
[26] | 张煜, 李海英, 陈修平, 等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效[J]. 石油与天然气地质, 2022, 43(6): 1466-1480. |
ZHANG Yu, LI Haiying, CHEN Xiuping, et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(6): 1466-1480. | |
[27] | 漆立新, 云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质, 2020, 42(5): 867-876. |
QI Lixin, YUN Lu. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 867-876. | |
[28] | 杨学文. 塔里木盆地超深油气勘探实践与创新[M]. 北京: 石油工业出版社, 2019. |
YANG Xuewen. Practice and innovation of ultra-deep oil and gas exploration in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2019. | |
[29] | 王石, 万琼华, 陈玉琨, 等. 基于辫状河储层构型的流动单元划分及其分布规律[J]. 油气地质与采收率, 2015, 22(5): 47-51. |
WANG Shi, WAN Qionghua, CHEN Yukun, et al. Flow units division and their distribution law based on braided river reservoir architecture[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5): 47-51. | |
[30] |
万琼华, 罗伟, 梁杰, 等. 基于储层构型的流动单元渗流屏障级次研究[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 77-84.
doi: 10.11885/j.issn.1674-5086.2018.05.08.01 |
WAN Qionghua, LUO Wei, LIANG Jie, et al. Reservoir architecture-based classification of seepage barriers of flow unit[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(1): 77-84.
doi: 10.11885/j.issn.1674-5086.2018.05.08.01 |
[1] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[2] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[3] | MA Litao, WU Peng, YANG Jianghao, HU Weiqiang, HUANG Ying, LIU Cheng, NIU Yanwei, WANG Zhizhuang, REN Dazhong. Microscopic pore structure characteristics and implications of deep coal measure reservoirs in eastern Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 217-226. |
[4] | WANG Pengxiang, ZHANG Zhou, YU Wanying, ZOU Qiang, YANG Zhengtao. Characteristics of pore-fracture structure and three-dimensional spatial distribution differences in deep and shallow coal reservoirs: A case study of Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 227-236. |
[5] | ZHAO Chongsheng, WANG Bo, GOU Bo, LUO Pengfei, CHEN Guojun, WU Guoquan. Equipment configuration and process technology of hybrid oil-electric fracturing for deep coalbed methane [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 292-299. |
[6] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[7] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[8] | QIU Xiaoxue, SHI Xuewen, LIAO Maojie, ZHANG Dongjun, GAO Xiang, YANG Yang, ZHONG Guanghai, LIU Peng. Research and application of fracture identification and effectiveness evaluation methods for deep shale reservoirs: A case study in southern Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 40-48. |
[9] | HUANG Li, XIONG Xianyue, WANG Feng, SUN Xiongwei, ZHANG Yixin, ZHAO Longmei, SHI Shi, ZHANG Wen, ZHAO Haoyang, JI Liang, DENG Lin. A new method for determining factors Influencing productivity of deep coalbed methane vertical cluster wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 990-996. |
[10] | XUE Yifan, WEN Zhigang, HUANG Yahao, ZHANG Yintao, QIAO Zhanfeng, ZHANG Tianfu, LI Mengqin, WANG Peng. Study on reservoir fluid source and hydrocarbon accumulation process in deep to ultra-deep strike-slip fault zone: A case study of Fuman Oilfield, Tarim Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 549-559. |
[11] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[12] | CHENG Hai,ZHANG Yiqun,WANG Yin,LIU Chao. Progress and understanding on geology-drilling engineering-mechanics coupling mechanism of ultra-deep directional wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 593-599. |
[13] | WEN Xing,WANG Kun,XIE Mingying,FENG Shasha,LI Li,LI Wei. Innovation and practice of secondary development technology for China’s first long-term abandoned deepwater oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 610-617. |
[14] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[15] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
|