Petroleum Reservoir Evaluation and Development
Previous Articles Next Articles
WANG Yibing1, ZHANG Fei2,3, LAI Peng1, LIAO Zhengkai1, MEI Wenbo2,3, YANG Qi2,3, LI Guichuan2,3, ZHANG Jintao2,3, XIAN Baoan2,3, BI Yansen2,3
Received:
2025-01-06
CLC Number:
WANG YIBING,ZHANG FEI,LAI PENG, et al. Model modification and experimental study on pulverized coal migration in coalbed methane well[J]. Petroleum Reservoir Evaluation and Development, 0, (): 250729-.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://red.magtech.org.cn/EN/
[1] 高德利, 毕延森, 鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业, 2022, 42(6): 1-18. GAO Deli, BI Yansen, XIAN Bao'an. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry, 2022, 42(6): 1-18. [2] 鲜保安, 高德利, 徐凤银, 等. 中国煤层气水平井钻完井技术研究进展[J]. 石油学报, 2023, 44(11): 1974-1992. XIAN Bao'an, GAO Deli, XU Fengyin, et al. Research progress of coalbed methane horizontal well drilling and completion technology in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1974-1992. [3] 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682. XU Fengyin, HOU Wei, XIONG Xianyue, et al.The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682. [4] 黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238. HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al.Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238. [5] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探. 2022, 50(3): 1-14. XU Fengyin, YAN Xia, LIN Zhenpan, et al.Research progress and development direction of key technologies for efficientcoalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3): 1-14. [6] 桑树勋, 王冉, 周效志, 等. 论煤地质学与碳中和[J]. 煤田地质与勘探, 2021, 49(1): 1-11. SANG Shuxun, WANG Ran, ZHOU Xiaozhi, et al.Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration, 2021, 49(1): 1-11. [7] 徐凤银, 王勃, 赵欣, 等. "双碳"目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18. XU Fengyin, WANG Bo, ZHAO Xin, et al.Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of "double carbon"[J]. China Petroleum Exploration, 2021, 26(3): 9-18. [8] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371-387. QIN Yong, SHEN Jian, SHI Rui.Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1): 371-387. [9] XIAN B A, LIU G F, BI Y S, et al.Coalbed methane recovery enhanced by screen pipe completion and jet flow washing of horizontal well double tubular strings[J]. Journal of Natural Gas Science and Engineering, 2022: 104430. [10] 鲜保安, 张龙, 哈尔恒·吐尔松, 等. 煤层气储层伤害机理与水平井双层管柱筛管完井技术[J]. 煤田地质与勘探, 2022(9): 128-135. XIAN Bao'an, ZHANG Long, Ha'erheng·Tu'ersong, et al. Damage mechanism of CBM reservoirs and double-layered screen pipes in the horizontal well completion[J]. Coal Geology & Exploration,2022(9): 128-135. [11] 毕延森, 高德利, 鲜保安. 煤层气水平井筛管密集分段径向射流增透方法[J]. 石油钻采工艺, 2024, 46(1): 119-129. BI Yansen, GAO Deli, XIAN Baoan.Dense segmented radial jetting stimulation method of screen tube incoalbed methane horizontal well[J]. Oil Drilling & Production Technology, 2024, 46(1): 119-129. [12] 毕延森, 高德利, 鲜保安, 等. 复杂煤体结构煤储层水平井复合管柱完井方法研究[J]. 煤炭科学技术, 2023, 51(10): 189-197. BI Yansen, GAO Deli, XIAN Baoan, et al.Study on horizontal completion with composite tubular string in coalreservoir with complex coal structure[J]. Coal Science and Technology,2023,51(10):189-197. [13] 刘春花, 刘新福, 綦耀光. 煤层气井有杆排采泵筒煤粉流动特征[J]. 煤田地质与勘探, 2016, 44(6): 64-68. LIU Chunhua, LIU Xinfu, QI Yaoguang. Study on the characteristics of coal moving in sucker rod pump for CBM wells[J]. Coal Geology & Exploration, 2016, 44(6):64-68. [14] 曹立虎, 张遂安, 张亚丽, 等. 煤层气水平井煤粉产出及运移特征[J]. 煤田地质与勘探, 2014, 42(3): 31-35. CAO Lihu, ZHANG Suian, ZHANG Yali, et al.Investigation of coal powder generation and migration characteristics in coalbed methane horizontal well[J]. Coal Geology & Exploration, 2014, 42(3): 31-35. [15] 姚征, 曹代勇, 魏迎春, 等. 水岩反应中泥质夹层生成固相微粒的实验研究[J]. 煤炭学报, 2019, 44(7): 2188-2196. YAO Zheng, CAO Daiyong, WEI Yingchun, et al.Experimental research on the generation of solid fines from muddy intercalation in water-rock reaction[J]. Journal of China Coal Society, 2019, 44(7): 2188-2196. [16] 张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报, 2021, 42(1): 105-118. ZHANG Sui'an, LIU Xinjia, WEN Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118. [17] CHI W G, YANG L W.A feasible discussion on exploitation coalbed methane through Horizontal Network Drilling in China[C]// Paper presented at the International Oil and Gas Conference and Exhibition in China, Beijing, China, November 2000. [18] LI Y, TANG D, XU H, et al.Geological and hydrological controls on water coproduced with coalbed methane in Liulin, eastern Ordos basin, China[J]. AAPG Bulletin, 2015, 99(2): 207-229. [19] NGUYEN P D, DUSTERHOFT R G, CLARKSON B.Control of formation fines to provide long-term conductivity in weak, unconsolidated reservoirs[C]// Paper presented at the Offshore Technology Conference, Houston, Texas, May 2005. [20] 张越, 于姣姣, 李又武, 等. 薄互层煤层气井出砂综合治理研究[J]. 煤矿安全, 2024, 55(2): 35-40. ZHANG Yue, YU Jiaojiao, LI Youwu, et al.Research on sand control in thin interbed CBM wells[J]. Safety in Coal Mines, 2024, 55(2): 35-40. [21] 魏迎春, 孟涛, 张劲, 等. 不同煤体结构煤储层与煤层气井产出煤粉特征的关系——以鄂尔多斯盆地东缘柳林区块为例[J]. 石油学报, 2023, 44(6): 1000-1014. WEI Yingchun, MENG Tao, ZHANG Jin, et al.Relationship between coal reservoirs with different coal structures and the characteristics of coal fines produced in CBM wells: A case study of Liulin block at the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(6): 1000-1014. [22] 魏迎春, 李超, 曹代勇, 等. 煤层气洗井中不同粒径煤粉的分散剂优选实验[J]. 煤炭学报, 2017, 42(11): 2908-2913. WEI Yingchun, LI Chao, CAO Daiyong, et al.Experiment on screening dispersants of pulverized coal with different sizes in CBM well-washing technology[J]. Journal of China Coal Society, 2017, 42(11): 2908-2913. [23] PALMER I D, MSOCHOVIDIS Z A, CAMERON J R.Coal failure and consequences for coalbed methane wells[C]// Paper presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 2005. [24] 魏迎春, 曹代勇,袁远, 等. 韩城区块煤层气井产出煤粉特征及主控因素[J]. 煤炭学报, 2013, 38(8): 1424-1429. WEI Yingchun, CAO Daiyong, YUAN Yuan, et al.Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area[J]. Journal of China Coal Society, 2013, 38(8): 1424-1429. [25] 陈振宏. 高、低煤阶煤层气藏主控因素差异性对比研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2007. CHEN Zhenhong.Key controlling factors comparison between high and low rank CBM reservoir formation[D]. Guangzhou: The Graduate School of The Chinese Academy of Sciences, 2007. [26] 李勇, 韩文龙, 王延斌, 等. 基于煤层气高效开发的煤粉凝聚-沉降机制研究进展[J]. 煤田地质与勘探, 2021, 49(2): 1-12. LI Yong, HAN Wenlong, WANG Yanbin, et al.Progress of coal fines agglomeration and settlement mechanism based on high efficiency coalbed methane drainage[J]. Coal Geology & Exploration, 2021, 49(2): 1-12. [27] 刘升贵, 贺小黑, 李惠芳. 煤层气水平井煤粉产生机理及控制措施[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30(4): 508-512. LIU Shenbggui, HE Xiaohei, LI Huifang.Production mechanism and control measures of coal powder in coalbed methane horizontal well[J]. Journal of Liaoning Technical University (Natural Science), 2011, 30(4): 508-512. [28] 张晓玉, 王安民, 张傲翔, 等. 韩城区块构造煤类型及其产出煤粉特征分析[J]. 中国煤炭地质,2014, 26(8): 91-94. ZHANG Xiaoyu, WANG Anmin, ZHANG Aoxiang, et al.Tectonoclastic coal types and characteristic analysis of coal fines in Hancheng Block[J]. Coal Geology of China, 2014, 26(8): 91-94. [29] 刘升贵, 涂坤, 彭智高. 三交区块煤层气井煤粉产出动态规律及管控措施[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(8): 785-790. LIU Shenggui, TU Kun, PENG Zhigao.Pulverized coal output dynamic laws and control measures of CBM wells in Sanjiao Block[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(8): 785-790. [30] STOKES G G.On the effect of the internal friction of fluids on the motion of pendulums[J]. 1851. [31] ALLEN H S.The flow of viscous fluid at small Reynaud numbers[J]. Phil Mag, 1900, 5(2): 323-329. [32] GOLDSTEIN S.The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1929, 123(791): 225-235. [33] DAZHI G, TANNER R.I. The drag on a sphere in a power-law fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1985, 17(1). [34] 张芬娜, 李明忠, 綦耀光, 等. 煤层气排采产气通道适度携煤粉理论[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 86-92. ZHANG Fenna, LI Mingzhong, QI Yaoguang, et al.Analysis of pulverized coal migration during CBM production[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 86-92. [35] 刘春花, 刘新福, 周超. 煤层气井排采过程中煤粉运移规律研究[J]. 煤田地质与勘探, 2015, 43(5): 23-26. LIU Chunhua, LIU Xinfu, ZHOU Chao.Migration patterns of coal powder in coal reservoirs during the well drainage[J]. Coal Geology & Exploration, 2015, 43(5): 23-26. [36] 东振, 鲍清英, 张义. 煤层气井排采阶段煤粉运移条件研究[J]. 特种油气藏, 2015, 22(2): 143-146. DONG Zhen, BAO Qingying, ZHANG Yi.CBM well coal-powder migration conditions in water drainage gas recovery[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 143-146. [37] 申焱华, 毛纪陵, 凌胜. 垂直管道固液两相流的最小提升水流速度[J]. 工程科学学报, 1999(6): 519-522. SHEN Yihau, MAO Jiling, LING Sheng.The minimum lifting water velocity of solid-liquid two-phase flow in vertical pipeline[J]. Chinese Journal of Engineering, 1999(6): 519-522. [38] 刘爱萍, 邓金根. 垂直井筒低黏度液流最小携砂速度研究[J]. 石油钻采工艺, 2007(1): 31-33. LIU Aiping, DENG Jingen.Research on critical sand transportation velocity for low viscosity liquid flow in vertical well-bore[J]. Oil Drilling & Production Technology, 2007(1): 31-33. [39] 邹雨时, 张士诚, 张劲. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报, 2012, 37(11): 1890-1894. ZOU Yushi, ZHANG Shicheng, ZHANG Jin.Damage mechanism of coal powder on fracture conductivity[J]. Journal of China Coal Society, 2012, 37(11): 1890-1894. [40] 韩国庆, 高飞, 竺彪, 等. 煤层气井煤粉颗粒表观机械运移规律[J]. 煤炭学报, 2013, 38(增刊2): 364-369. HAN Guoqing, GAO Fei, ZHU Biao, et al.Superficial transport mechanisms of coal particles in the coal-bed methane well[J]. Journal of China Coal Society, 2013, 38(Suppl.2): 364-369. [41] 曹立虎, 张遂安, 石惠宁, 等. 沁水盆地煤层气水平井井筒煤粉迁移及控制[J]. 石油钻采工艺, 2012, 34(4): 93-95. CAO Lihu, ZHANG Suian, SHI Huining, et al.Coal dust migration and treatment for coalbed methane horizontal wells in Qinshui Basin[J]. Oil Drilling & Production Technology, 2012, 34(4): 93-95. [42] 崔金榜, 李沛, 马东民, 等. 煤层气水平井井筒煤粉迁移规律试验研究[J]. 煤炭科学技术, 2016, 44(5): 74-78. CUI Jinbang, LI Pei, MA Dongmin, et al.Experiment study on migration law of pulverized coal in borehole of coalbed methane horizontal well[J]. Coal Science and Technology, 2016, 44(5) : 74-78. [43] 王东营. 煤层气水平井井筒煤粉运移规律实验研究[D]. 北京: 中国石油大学(北京), 2017. WANG Dongying.The experimental research on transportation mechanism of coal particles carried by gas and water in coal-bed methane horizontal wellbore[D]. Beijing: China University of Petroleum, 2017. [44] 王博洋, 崔云飞, 王千, 等. 不同类型孔缝约束下煤粉运移与沉降可视化分析[J]. 煤炭科学技术, 2024, 52(增刊2): 294-311. WANG Boyang, CUI Yunfei, WANG Qian, et al.DING Yan1 Visualization analysis of coal fine migration and settlement under different types of pore-fracture[J]. Coal Science and Technology,2024, 52(Suppl.2): 294-311. [45] 慕甜, 马东民, 陈跃, 等. 煤层气井多相流条件下不同粒径煤粉启动-运移规律[J]. 煤炭科学技术, 2020, 48(5): 188-196. MU Tian, MA Dongmin, CHEN Yue, et al.Start-migration law of coal powder with different particle sizes under multi-phase flow conditions in coalbed methane wells[J]. Coal Science and Technology, 2020, 48(5): 188-196. [46] 张芬娜, 宋云飞, 朱洪迎, 等. 深部煤层气直井井筒液携煤粉颗粒特性分析[J]. 中国矿业大学学报, 2021, 50(6): 1060-1066. ZHANG Fenna, SONG Yunfei, ZHU Hongying, et al.Analysis on characteristics of particles carried by vertical wellbore fluidflow in deep coalbed methane wells[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1060-1066. [47] HUANG F, DDONG C, SHANG X, et al.Effects of proppant wettability and size on transport and retention of coal fines in saturated proppant packs: Experimental and theoretical studies[J]. Energy & Fuels, 2021, 35(15): 11976-11991. [48] NI X, LI Q, ZHAO Z, et al.The change of fracture conductivity caused by coal fines with different particle sizes displaced by single-phase water[J]. Arabian Journal of Geosciences 2020, 13(23): 1268. [49] GAO D, LIU Y, WANG T, et al.Experimental investigation of the impact of coal fines migration on coal core water flooding[J]. Sustainability, 2018, 10(11): 257-266. [50] 张劲, 林亮, 魏迎春, 等. 柳林区块煤层气水平井煤粉产出特征及影响因素研究[J]. 中国煤炭地质, 2021, 33(10): 11-16. ZHANG Jin, LIN Liang, WEI Yingchun, et al.Study on CBM horizontal well coal fines generation features and impacting factors in Liulin Block[J]. Coal Geology of China, 2021, 33(10): 11-16. [51] 张芬娜, 陈波, 李明忠, 等. 煤粉颗粒在垂直井筒沉降规律试验研究[J]. 石油机械, 2015, 43(6): 76-79. ZHANG Fenna, CHEN Bo, LI Mingzhong, et al.Experimental research on settlement law of coal fines in vertical wellbore[J]. China Petroleum Machinery, 2015, 43(6): 76-79. [52] 刘新福. 煤层气井有杆排采井筒煤粉运移规律和防煤粉关键技术研究[D]. 青岛:中国石油大学(华东), 2012. LIU Xinfu.Research on coal migration and the key technology of coal control for sucker rod pumping system in CBM wellbore[D]. Qingdao: China University of Petroleum (East China), 2012. |
[1] | XU Dan, ZHANG Cong, JIA Huimin, LI Yuhong, QIN Shengfei, ZHANG Wen, ZHOU Junlin, MA Shangwei, FAN Yan. Noble gas isotopic characteristics and helium dilution of coalbed methane from the third coal seam in southern Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 921-932. |
[2] | ZHANG Ning, CAO Fei, LI Zongyu, ZHANG Yun, SUN Yang, PAN Yi, SUN Lei. Impact of non-equilibrium phase transition of reservoir fluid on production performance in Shunbei ultra-deep fault-controlled condensed gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 471-478. |
[3] | LIU Haoqi, CHEN Fuhong, YU Zhili, GONG Wei, LUO Xi, LIN Hun. Experimental study of settlement and migration patterns of proppant in long narrow fractures in deep shale [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 528-536. |
[4] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[5] | WANG Liangjun, WANG Yong, ZHANG Xinwen, JIN Yunyun, ZHU Yan, ZHANG Gaoyuan, LI Hui, LI Wangju. Coal accumulation control on gas and coalbed methane exploration potential in southern Ordos Basin: A case study of Carboniferous Taiyuan Formation in Xunyi exploration area [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 175-184. |
[6] | ZHU Suyang, LIU Wei, WANG Yunfeng, JIA Chunsheng, CHEN Chaogang, PENG Xiaolong. Current situation and prospects of coalbed methane exploration and development in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 185-193. |
[7] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[8] | WANG Pengxiang, ZHANG Zhou, YU Wanying, ZOU Qiang, YANG Zhengtao. Characteristics of pore-fracture structure and three-dimensional spatial distribution differences in deep and shallow coal reservoirs: A case study of Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 227-236. |
[9] | YU Yang, DONG Yintao, LI Yunbo, BAO Yu, ZHANG Lixia, SUN Hao. Research on prediction of bottom hole flowing pressure for vertical coalbed methane wells based on improved SSA-BPNN [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 250-256. |
[10] | ZHANG Wen, HUANG Hongxing, LIU Ying, FENG Yanqing, SUN Wei, LI Ziling, WANG Jing, ZHAO Zengping. Research on recoverable reserves and gas production characteristics of coalbed methane wells in Baode block of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 257-265. |
[11] | HU Qiujia, LIU Chunchun, ZHANG Jianguo, CUI Xinrui, WANG Qian, WANG Qi, LI Jun, HE Shan. Machine learning-based coalbed methane well production prediction and fracturing parameter optimization [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 266-273. |
[12] | ZHAO Chongsheng, WANG Bo, GOU Bo, LUO Pengfei, CHEN Guojun, WU Guoquan. Equipment configuration and process technology of hybrid oil-electric fracturing for deep coalbed methane [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 292-299. |
[13] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[14] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[15] | KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932. |
|